Skip to content

Commit

Permalink
fix latex in readme
Browse files Browse the repository at this point in the history
  • Loading branch information
stecrotti committed Aug 30, 2024
1 parent 630d9fe commit 255526e
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

A fully-connected ferromagnetic [Ising model](https://en.wikipedia.org/wiki/Ising_model) with uniform coupling strength, described by a Boltzmann distribution

$$p(\boldsymbol{\sigma}) = \frac{1}{Z} \exp\left[\beta\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right],\quad \boldsymbol{\sigma}\in\{-1,1\}^N $$
$p(\boldsymbol{\sigma}) = \frac{1}{Z} \exp\left[\beta\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right],\quad \boldsymbol{\sigma}\in\{-1,1\}^N $

is exactly solvable in polynomial time.

Expand All @@ -15,8 +15,8 @@ is exactly solvable in polynomial time.
| Normalization | $Z=\sum\limits_{\boldsymbol{\sigma}}\exp\left[\beta\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right]$ | $\mathcal O (N^2)$ |
| Free energy | $F = -\frac{1}{\beta}\log Z$ | $\mathcal O (N^2)$ |
| Sample a configuration | $\boldsymbol{\sigma} \sim p(\boldsymbol{\sigma})$ | $\mathcal O (N^2)$ |
| Average energy | $\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\left[-\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right]$ | $\mathcal O (N^2)$ |
| Entropy | $-\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\log p(\boldsymbol{\sigma})$ | $\mathcal O (N^2)$ |
| Average energy | $U = \sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\left[-\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right]$ | $\mathcal O (N^2)$ |
| Entropy | $S = -\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\log p(\boldsymbol{\sigma})$ | $\mathcal O (N^2)$ |
| Distribution of the sum of the N spins | $p_S(s)=\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\delta\left(s-\sum_{i=1}^N\sigma_i\right)$ | $\mathcal O (N^2)$ |
| Site magnetizations | $m_i=\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\sigma_i,\quad\forall i\in\{1,2,\ldots,N\}$ | $\mathcal O (N^3)$ |
| Correlations | $r_{ij}=\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\sigma_i\sigma_j,\quad\forall j\in\{1,2,\ldots,N\},i<j$ | $\mathcal O (N^5)$ |
Expand Down

2 comments on commit 255526e

@stecrotti
Copy link
Owner Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/114172

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.4.0 -m "<description of version>" 255526eb78c77177e596e5d45e1593146ab7c22f
git push origin v0.4.0

Please sign in to comment.