Skip to content

stella-project/econbiz_rank_base

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Micro template of the STELLA infrastructure

This repository provides interested experimenters with a template for integrating their ranking and recommendation systems into the STELLA infrastructure. Currently, the infrastructure supports two different types of submission. Experimenters can choose to submit pre-computed runs with TREC run file syntax OR use this repository in order to integrate their system as a micro-service into the STELLA App. In contrast to pre-computed results, these dockerized systems can deliver more comprehensive search result since they are not limited to pre-selected queries or items.

workflow

Development notes

As a starting point we provide a web-service based on flask in app.py. The classes in systems.py need to be adapted. Of course, experimenters are not restricted to use Flask or Python at all as long as the resulting Docker containers implement the required REST endpoints and deliver technically correct responses.

We provide tutorials in the form of setup guides and videos. For starters, following one of the provided resources should be enough.

Implementing a ranking service

Implementing a recommendation service

Requirements

Before starting your implementations, some requirements have to be fullfiled:

Besides a Python distribution like Anaconda and an IDE like PyCharm can be helpful. Likewise, you should be familiar with virtual environments.

REST endpoints

For ranking systems the following endpoint has to be implemented:

GET container_name/ranking?query=<string:qstr>&page=<int:pnum>&rpp=<int:rppnum>

For recommending datasets this endpoint has to be implemented:

GET container_name/recommendation/datasets?itemid=<string:itemidstr>&page=<int:pnum>&rpp=<int:rppnum>

For recommending publications this endpoint has to be implemented:

GET container_name/recommendation/publications?itemid=<string:itemidstr>&page=<int:pnum>&rpp=<int:rppnum>

Whereas the parameters contain the following information:

Parameter Explanation
query String-formatted query corresponding to the ranking
itemid Identifier of the target item corresponding to the recommendation
page Number of page
rpp Number of results per page

Requirements: The submitted system has run in a single Docker container and this repository should be self-contained. As a starting point, please have a look at the Dockerfile.

Testing

Before registering your ready-to-be-evaluated system, make sure you run the tests provided in test/. Beside unit tests, we provide Python scripts to build, run, stop and remove the Docker images/containers. Once the Docker container is started run either test_ranking, test_recommendation_datasets, or test_recommendation_publications.

Data

Datasets can be retrieved after registration. Experimenters can choose to implement their system with datasets provided by LIVIVO or GESIS. Recommendation systems are going to be deployed at GESIS, whereas ranking systems at LIVIVO.

Register

In order to get access and submit systems, experimenters have to register here. As soon as you have registered, you can submit your system by adding a link to your GitHub repository. After approval your system is ready to be integrated into the STELLA App.

FAQ & Known Issues

As far as we know, the development process works fine within a UNIX environment. However we received the following feedback from Windows users:

  • Instead of using the address 0.0.0.0, it should be localhost when starting flask.
  • For some Windows users the docker-sdk did not work at the first try and a reinstallation of Anaconda could solve the issue.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.5%
  • Dockerfile 1.5%