Skip to content

Commit

Permalink
Prediction to bigquery component - initial code (#210)
Browse files Browse the repository at this point in the history
* initial predictions-to-bigquery component

* dyn schema - wip

* added comment

* added code owner

---------

Co-authored-by: Hannes Hapke <[email protected]>
  • Loading branch information
hanneshapke and hanneshapke authored Feb 6, 2023
1 parent 5b87707 commit 4862345
Show file tree
Hide file tree
Showing 6 changed files with 539 additions and 0 deletions.
3 changes: 3 additions & 0 deletions CODEOWNERS
Validating CODEOWNERS rules …
Original file line number Diff line number Diff line change
Expand Up @@ -55,5 +55,8 @@
/tfx_addons/message_exit_handler @hanneshapke
/tfx_addons/utils @hanneshapke

# Predictions to Bigquery Component
/tfx_addons/predictions_to_bigquery @hanneshapke

# PandasTransform Component
/tfx_addons/pandas_transform @rcrowe-google
Empty file.
100 changes: 100 additions & 0 deletions tfx_addons/predictions_to_biquery/component.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
"""
Digits Prediction-to-BigQuery: Functionality to write prediction results usually from a BulkInferrer to BigQuery.
"""

from typing import Optional

from tfx import types
from tfx.dsl.components.base import base_component, executor_spec
from tfx.types import standard_artifacts
from tfx.types.component_spec import ChannelParameter, ExecutionParameter

from .executor import Executor as AnnotateUnlabeledCategoryDataExecutor

_MIN_THRESHOLD = 0.8
_VOCAB_FILE = "vocab_label_txt"


class AnnotateUnlabeledCategoryDataComponentSpec(types.ComponentSpec):

PARAMETERS = {
# These are parameters that will be passed in the call to
# create an instance of this component.
"vocab_label_file": ExecutionParameter(type=str),
"bq_table_name": ExecutionParameter(type=str),
"filter_threshold": ExecutionParameter(type=float),
"table_suffix": ExecutionParameter(type=str),
"table_partitioning": ExecutionParameter(type=bool),
"expiration_time_delta": ExecutionParameter(type=int),
}
INPUTS = {
# This will be a dictionary with input artifacts, including URIs
"transform_graph": ChannelParameter(type=standard_artifacts.TransformGraph),
"inference_results": ChannelParameter(type=standard_artifacts.InferenceResult),
"schema": ChannelParameter(type=standard_artifacts.Schema),
}
OUTPUTS = {
"bigquery_export": ChannelParameter(type=standard_artifacts.String),
}


class AnnotateUnlabeledCategoryDataComponent(base_component.BaseComponent):
"""
AnnotateUnlabeledCategoryData Component.
The component takes the following input artifacts:
* Inference results: InferenceResult
* Transform graph: TransformGraph
* Schema: Schema (optional) if not present, the component will determine the schema
(only predtion supported at the moment)
The component takes the following parameters:
* vocab_label_file: str - The file name of the file containing the vocabulary labels
(produced by TFT).
* bq_table_name: str - The name of the BigQuery table to write the results to.
* filter_threshold: float - The minimum probability threshold for a prediction to
be considered a positive, thrustworthy prediction. Default is 0.8.
* table_suffix: str (optional) - If provided, the generated datetime string will
be added the BigQuery table name as suffix. The default is %Y%m%d.
* table_partitioning: bool - Whether to partition the table by DAY. If True,
the generated BigQuery table will be partition by date. If False, no partitioning will
be applied. Default is True.
* expiration_time_delta: int (optional) - The number of seconds after which the table will expire.
The component produces the following output artifacts:
* bigquery_export: String - The URI of the BigQuery table containing the results.
"""

SPEC_CLASS = AnnotateUnlabeledCategoryDataComponentSpec
EXECUTOR_SPEC = executor_spec.BeamExecutorSpec(AnnotateUnlabeledCategoryDataExecutor)

def __init__(
self,
inference_results: types.Channel = None,
transform_graph: types.Channel = None,
bq_table_name: str = None,
vocab_label_file: str = _VOCAB_FILE,
filter_threshold: float = _MIN_THRESHOLD,
table_suffix: str = "%Y%m%d",
table_partitioning: bool = True,
schema: Optional[types.Channel] = None,
expiration_time_delta: Optional[int] = 0,
bigquery_export: Optional[types.Channel] = None,
):

bigquery_export = bigquery_export or types.Channel(type=standard_artifacts.String)
schema = schema or types.Channel(type=standard_artifacts.Schema())

spec = AnnotateUnlabeledCategoryDataComponentSpec(
inference_results=inference_results,
transform_graph=transform_graph,
schema=schema,
bq_table_name=bq_table_name,
vocab_label_file=vocab_label_file,
filter_threshold=filter_threshold,
table_suffix=table_suffix,
table_partitioning=table_partitioning,
expiration_time_delta=expiration_time_delta,
bigquery_export=bigquery_export,
)
super().__init__(spec=spec)
178 changes: 178 additions & 0 deletions tfx_addons/predictions_to_biquery/executor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
"""
Executor functionality to write prediction results usually from a BulkInferrer to BigQuery.
"""

import datetime
import os
from typing import Any, Dict, List, Tuple

import apache_beam as beam
import numpy as np
import tensorflow as tf
import tensorflow_transform as tft
from absl import logging
from tensorflow.python.eager.context import eager_mode
from tensorflow_serving.apis import prediction_log_pb2
from tfx import types
from tfx.dsl.components.base import base_beam_executor
from tfx.types import artifact_utils

from .utils import (convert_single_value_to_native_py_value,
create_annotation_fields, feature_to_bq_schema,
load_schema, parse_schema)

_SCORE_MULTIPLIER = 1e6
_SCHEMA_FILE = "schema.pbtxt"
_ADDITIONAL_BQ_PARAMETERS = {}


@beam.typehints.with_input_types(str)
@beam.typehints.with_output_types(beam.typehints.Iterable[Tuple[str, str, Any]])
class FilterPredictionToDictFn(beam.DoFn):
"""
Convert a prediction to a dictionary.
"""

def __init__(
self,
labels: List,
features: Any,
ts: datetime.datetime,
filter_threshold: float,
score_multiplier: int = _SCORE_MULTIPLIER,
):
self.labels = labels
self.features = features
self.filter_threshold = filter_threshold
self.score_multiplier = score_multiplier
self.ts = ts

def _fix_types(self, example):
with eager_mode():
return [convert_single_value_to_native_py_value(v) for v in example.values()]

def _parse_prediction(self, predictions):
prediction_id = np.argmax(predictions)
logging.debug("Prediction id: %s", prediction_id)
logging.debug("Predictions: %s", predictions)
label = self.labels[prediction_id]
score = predictions[0][prediction_id]
return label, score

def process(self, element):
parsed_examples = tf.make_ndarray(element.predict_log.request.inputs["examples"])
parsed_predictions = tf.make_ndarray(element.predict_log.response.outputs["output_0"])

example_values = self._fix_types(tf.io.parse_single_example(parsed_examples[0], self.features))
label, score = self._parse_prediction(parsed_predictions)

if score > self.filter_threshold:
yield {
# TODO: features should be read dynamically
"feature0": example_values[0],
"feature1": example_values[1],
"feature2": example_values[2],
"category_label": label,
"score": int(score * self.score_multiplier),
"datetime": self.ts,
}


class Executor(base_beam_executor.BaseBeamExecutor):
"""
Beam Executor for predictions_to_bq.
"""

def Do(
self,
input_dict: Dict[str, List[types.Artifact]],
output_dict: Dict[str, List[types.Artifact]],
exec_properties: Dict[str, Any],
) -> None:
"""Do function for predictions_to_bq executor."""

ts = datetime.datetime.now().replace(second=0, microsecond=0)

# check required executive properties
if exec_properties["bq_table_name"] is None:
raise ValueError("bq_table_name must be set in exec_properties")
if exec_properties["filter_threshold"] is None:
raise ValueError("filter_threshold must be set in exec_properties")
if exec_properties["vocab_label_file"] is None:
raise ValueError("vocab_label_file must be set in exec_properties")

# get labels from tf transform generated vocab file
transform_output = artifact_utils.get_single_uri(input_dict["transform_graph"])
tf_transform_output = tft.TFTransformOutput(transform_output)
tft_vocab = tf_transform_output.vocabulary_by_name(vocab_filename=exec_properties["vocab_label_file"])
labels = [label.decode() for label in tft_vocab]
logging.info(f"found the following labels from TFT vocab: {labels}")

# get predictions from predict log
inference_results_uri = artifact_utils.get_single_uri(input_dict["inference_results"])

# set table prefix and partitioning parameters
bq_table_name = exec_properties["bq_table_name"]
if exec_properties["table_suffix"]:
bq_table_name += "_" + ts.strftime(exec_properties["table_suffix"])

if exec_properties["expiration_time_delta"]:
expiration_time = int(ts.timestamp()) + exec_properties["expiration_time_delta"]
_ADDITIONAL_BQ_PARAMETERS.update({"expirationTime": str(expiration_time)})
logging.info(f"expiration time on {bq_table_name} set to {expiration_time}")

if exec_properties["table_partitioning"]:
_ADDITIONAL_BQ_PARAMETERS.update({"timePartitioning": {"type": "DAY"}})
logging.info(f"time partitioning on {bq_table_name} set to DAY")

# set prediction result file path and decoder
prediction_log_path = f"{inference_results_uri}/*.gz"
prediction_log_decoder = beam.coders.ProtoCoder(prediction_log_pb2.PredictionLog)

# get features from tfx schema if present
if input_dict["schema"]:
schema_uri = os.path.join(artifact_utils.get_single_uri(input_dict["schema"]), _SCHEMA_FILE)
features = load_schema(schema_uri)

# generate features from predictions
else:
features = parse_schema(prediction_log_path)

# generate bigquery schema from tfx schema (features)
bq_schema_fields = feature_to_bq_schema(features, required=True)
bq_schema_fields.extend(
create_annotation_fields(
label_field_name="category_label", score_field_name="score", required=True, add_datetime_field=True
)
)
bq_schema = {"fields": bq_schema_fields}
logging.info(f"generated bq_schema: {bq_schema}")

with self._make_beam_pipeline() as pipeline:
_ = (
pipeline
| "Read Prediction Log" >> beam.io.ReadFromTFRecord(prediction_log_path, coder=prediction_log_decoder)
| "Filter and Convert to Dict"
>> beam.ParDo(
FilterPredictionToDictFn(
labels=labels,
features=features,
ts=ts,
filter_threshold=exec_properties["filter_threshold"],
)
)
| "Write Dict to BQ"
>> beam.io.gcp.bigquery.WriteToBigQuery(
table=bq_table_name,
schema=bq_schema,
additional_bq_parameters=_ADDITIONAL_BQ_PARAMETERS,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
)
)

bigquery_export = artifact_utils.get_single_instance(output_dict["bigquery_export"])

bigquery_export.set_string_custom_property("generated_bq_table_name", bq_table_name)

logging.info(f"Annotated data exported to {bq_table_name}")
34 changes: 34 additions & 0 deletions tfx_addons/predictions_to_biquery/test_component.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
"""
Tests around Digits Prediction-to-BigQuery component.
"""

import tensorflow as tf
from tfx.types import channel_utils, standard_artifacts

from . import component


class ComponentTest(tf.test.TestCase):
def setUp(self):
super(ComponentTest, self).setUp()
self._transform_graph = channel_utils.as_channel([standard_artifacts.TransformGraph()])
self._inference_results = channel_utils.as_channel([standard_artifacts.InferenceResult()])
self._schema = channel_utils.as_channel([standard_artifacts.Schema()])

def testConstruct(self):
# not a real test, just checking if if the component can be
# instantiated
_ = component.AnnotateUnlabeledCategoryDataComponent(
transform_graph=self._transform_graph,
inference_results=self._inference_results,
schema=self._schema,
bq_table_name="gcp_project:bq_database.table",
vocab_label_file="vocab_txt",
filter_threshold=0.1,
table_suffix="%Y",
table_partitioning=False,
)


if __name__ == "__main__":
tf.test.main()
Loading

0 comments on commit 4862345

Please sign in to comment.