Skip to content

Commit

Permalink
add givens methods
Browse files Browse the repository at this point in the history
  • Loading branch information
DeadlyArtist committed Apr 22, 2024
1 parent a395e3b commit 37b3e6a
Show file tree
Hide file tree
Showing 3 changed files with 268 additions and 3 deletions.
194 changes: 191 additions & 3 deletions src/tequila/quantumchemistry/qc_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@

import typing, numpy, numbers
from itertools import product

import tequila.grouping.fermionic_functions as ff


try:
Expand All @@ -32,8 +32,7 @@
except Exception as E:
raise Exception("{}\nIssue with Tequila Chemistry: Please update openfermion".format(str(E)))
import warnings


OPTIMIZED_ORDERING = "Optimized"
class QuantumChemistryBase:
"""
Base Class for tequila chemistry functionality
Expand Down Expand Up @@ -2127,6 +2126,58 @@ def perturbative_f12_correction(self, rdm1: numpy.ndarray = None, rdm2: numpy.nd
n_ri=n_ri, external_info=external_info, **kwargs)
return correction.compute()

def n_rotation(self, i, phi):
'''
Creates a quantum circuit that applies a phase rotation based on phi to both components (up and down) of a given qubit.
Parameters:
- i (int): The index of the qubit to which the rotation will be applied.
- phi (float): The rotation angle. The actual rotation applied will be multiplied with -2 for both components.
Returns:
- QCircuit: A quantum circuit object containing the sequence of rotations applied to the up and down components of the specified qubit.
'''

# Generate number operators for the up and down components of the qubit.
n_up = self.make_number_op(2*i)
n_down = self.make_number_op(2*i+1)

# Start a new circuit and apply rotations to each component.
circuit = gates.GeneralizedRotation(generator = n_up, angle=-2*phi)
circuit += gates.GeneralizedRotation(generator = n_down, angle=-2*phi)
return circuit

def get_givens_circuit(self, unitary, tol = 1e-12, ordering = OPTIMIZED_ORDERING):
'''
Constructs a quantum circuit from a given real unitary matrix using Givens rotations.
This method decomposes a unitary matrix into a series of Givens and Rz (phase) rotations,
then constructs and returns a quantum circuit that implements this sequence of rotations.
Parameters:
- unitary (numpy.array): A real unitary matrix representing the transformation to implement.
- tol (float): A tolerance threshold below which matrix elements are considered zero.
- ordering (list of tuples or 'Optimized'): Custom ordering of indices for Givens rotations or 'Optimized' to generate them automatically.
Returns:
- QCircuit: A quantum circuit implementing the series of rotations decomposed from the unitary.
'''
# Decompose the unitary matrix into Givens and phase (Rz) rotations.
theta_list, phi_list = get_givens_decomposition(unitary, tol, ordering)

# Initialize an empty quantum circuit.
circuit = QCircuit()

# Add all Rz (phase) rotations to the circuit.
for phi in phi_list:
circuit += self.n_rotation(phi[1], phi[0])

# Add all Givens rotations to the circuit.
for theta in reversed(theta_list):
circuit += self.UR(theta[1], theta[2], theta[0]*2)

return circuit


def print_basis_info(self):
return self.integral_manager.print_basis_info()
Expand All @@ -2147,3 +2198,140 @@ def __str__(self) -> str:
result += "\nmore information with: self.print_basis_info()\n"

return result

def givens_matrix(n, p, q, theta):
'''
Construct a complex Givens rotation matrix of dimension n by theta between rows/columns p and q.
'''
'''
Generates a Givens rotation matrix of size n x n to rotate by angle theta in the (p, q) plane. This matrix can be complex
Parameters:
- n (int): The size of the Givens rotation matrix.
- p (int): The first index for the rotation plane.
- q (int): The second index for the rotation plane.
- theta (float): The rotation angle.
Returns:
- numpy.array: The Givens rotation matrix.
'''
matrix = numpy.eye(n) # Matrix to hold complex numbers
cos_theta = numpy.cos(theta)
sin_theta = numpy.sin(theta)

# Directly assign cosine and sine without complex phase adjustment
matrix[p, p] = cos_theta
matrix[q, q] = cos_theta
matrix[p, q] = sin_theta
matrix[q, p] = -sin_theta

return matrix

def get_givens_decomposition(unitary, tol = 1e-12, ordering = OPTIMIZED_ORDERING, return_diagonal = False):
'''
Decomposes a real unitary matrix into Givens rotations (theta) and Rz rotations (phi).
Parameters:
- unitary (numpy.array): A real unitary matrix to decompose. It cannot be complex.
- tol (float): Tolerance for considering matrix elements as zero. Elements with absolute value less than tol are treated as zero.
- ordering (list of tuples or 'Optimized'): Custom ordering of indices for Givens rotations or 'Optimized' to generate them automatically.
- return_diagonal (bool): If True, the function also returns the diagonal matrix as part of the output.
Returns:
- list: A list of tuples, each representing a Givens rotation. Each tuple contains the rotation angle theta and indices (i,j) of the rotation.
- list: A list of tuples, each representing an Rz rotation. Each tuple contains the rotation angle phi and the index (i) of the rotation.
- numpy.array (optional): The diagonal matrix after applying all Givens rotations, returned if return_diagonal is True.
'''
U = unitary # no need to copy as we don't modify the original
U[abs(U) < tol] = 0 # Zeroing out the small elements as per the tolerance level.
n = U.shape[0]

# Determine optimized ordering if specified.
if ordering == OPTIMIZED_ORDERING:
ordering = ff.depth_eff_order_mf(n)

theta_list = []
phi_list = []

def calcTheta(U, c, r):
'''Calculate and apply the Givens rotation for a specific matrix element.'''
t = numpy.arctan2(-U[r,c], U[r-1,c])
theta_list.append((t, r, r-1))
g = givens_matrix(n,r,r-1,t)
U = numpy.dot(g, U)

return U

# Apply and store Givens rotations as per the given or computed ordering.
if ordering is None:
for c in range(n):
for r in range(n-1, c, -1):
U = calcTheta(U, c, r)
else:
for r, c in ordering:
U = calcTheta(U, c, r)

# Calculating the Rz rotations based on the phases of the diagonal elements.
# For real elements this means a 180 degree shift, i.e. a sign change.
for i in range(n):
ph = numpy.angle(U[i,i])
phi_list.append((ph, i))

# Filtering out rotations without significance.
theta_list_new = []
for i, theta in enumerate(theta_list):
if abs(theta[0] % (2*numpy.pi)) > tol:
theta_list_new.append(theta)

phi_list_new = []
for i, phi in enumerate(phi_list):
if abs(phi[0]) > tol:
phi_list_new.append(phi)

if return_diagonal:
# Optionally return the resulting diagonal
return theta_list_new, phi_list_new, U
else:
return theta_list_new, phi_list_new

def reconstruct_matrix_from_givens(n, theta_list, phi_list, to_real_if_possible = True, tol = 1e-12):
'''
Reconstructs a matrix from given Givens rotations and Rz diagonal rotations.
This function is effectively an inverse of get_givens_decomposition, and therefore only works with data in the same format as its output.
Parameters:
- n (int): The size of the unitary matrix to be reconstructed.
- theta_list (list of tuples): Each tuple contains (angle, i, j) representing a Givens rotation of `angle` radians, applied to rows/columns `i` and `j`.
- phi_list (list of tuples): Each tuple contains (angle, i), representing an Rz rotation by `angle` radians applied to the `i`th diagonal element.
- to_real_if_possible (bool): If True, converts the matrix to real if its imaginary part is effectively zero.
- tol (float): The tolerance whether to swap a complex rotation for a sign change.
Returns:
- numpy.ndarray: The reconstructed complex or real matrix, depending on the `to_real_if_possible` flag and matrix composition.
'''
# Start with an identity matrix
reconstructed = numpy.eye(n, dtype=complex)

# Apply Rz rotations for diagonal elements
for phi in phi_list:
angle, i = phi
# Directly apply a sign flip if the rotation angle is π
if numpy.isclose(angle, numpy.pi, atol=tol):
reconstructed[i, i] *= -1
else:
reconstructed[i, i] *= numpy.exp(1j * angle)

# Apply Givens rotations in reverse order
for theta in reversed(theta_list):
angle, i, j = theta
g = givens_matrix(n, i, j, angle)
reconstructed = numpy.dot(g.conj().T, reconstructed) # Transpose of Givens matrix applied to the left

# Convert matrix to real if its imaginary part is negligible unless disabled via to_real_if_possible
if to_real_if_possible:
# Directly apply a sign flip if the rotation angle is π
if numpy.all(reconstructed.imag == 0):
# Convert to real by taking the real part
reconstructed = reconstructed.real

return reconstructed
17 changes: 17 additions & 0 deletions src/tequila/tools/random_generators.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from tequila.circuit import gates
from tequila.circuit.circuit import QCircuit
from tequila.hamiltonian.qubit_hamiltonian import QubitHamiltonian
from scipy.stats import unitary_group, ortho_group

def make_random_circuit(n_qubits: int, rotation_gates: list=['rx', 'ry', 'rz'], n_rotations: int=None,
enable_controls: bool=None) -> QCircuit:
Expand Down Expand Up @@ -75,3 +76,19 @@ def make_random_hamiltonian(n_qubits: int , paulis: list=['X','Y','Z'], n_ps: in

H = QubitHamiltonian(ham)
return H

def generate_random_unitary(size, complex = False):
'''
Generates a random unitary (or furthermore orthogonal if complex is False) matrix of a specified size.
Parameters:
- size (int): The size of the unitary matrix to be generated.
- complex (bool, optional): Whether the unitary should be complex.
Returns:
- numpy.ndarray: A randomly generated unitary matrix.
'''
if complex:
return unitary_group.rvs(size)
else:
return ortho_group.rvs(size)
60 changes: 60 additions & 0 deletions tests/test_givens.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import numpy
import tequila as tq
import tequila.quantumchemistry.qc_base as qc
import tequila.tools.random_generators as rg
import random

transformations = ["JordanWigner", "ReorderedJordanWigner", "BravyiKitaev", "BravyiKitaevTree"]
def test_givens_on_molecule():
# random size and transformation
size = random.randint(2, 10)
transformation = random.choice(transformations)

# dummy one-electron integrals
h = numpy.ones(shape=[size,size])
# dummy two-electron integrals
g = numpy.ones(shape=[size, size, size, size])

U = rg.generate_random_unitary(size)

# transformed integrals
th = (U.T.dot(h)).dot(U)
tg = numpy.einsum("ijkx, xl -> ijkl", g, U, optimize='greedy')
tg = numpy.einsum("ijxl, xk -> ijkl", tg, U, optimize='greedy')
tg = numpy.einsum("ixkl, xj -> ijkl", tg, U, optimize='greedy')
tg = numpy.einsum("xjkl, xi -> ijkl", tg, U, optimize='greedy')

# original molecule/H
mol = tq.Molecule(geometry="He 0.0 0.0 0.0", nuclear_repulsion=0.0, one_body_integrals=h, two_body_integrals=g, basis_set="dummy", transformation=transformation)
H = mol.make_hamiltonian()
# transformed molecule/H
tmol = tq.Molecule(geometry="He 0.0 0.0 0.0", nuclear_repulsion=0.0, one_body_integrals=th, two_body_integrals=tg,basis_set="dummy", transformation=transformation)
tH = tmol.make_hamiltonian()

# transformation in qubit space (this corresponds to the U above)
UR = mol.get_givens_circuit(U) # Works!

# test circuit
circuit = rg.make_random_circuit(size)

# create expectation values and see if they are the same
E1 = tq.ExpectationValue(U=circuit, H=tH)
E2 = tq.ExpectationValue(U=circuit + UR, H=H)

result1 = tq.simulate(E1)
result2 = tq.simulate(E2)

assert numpy.isclose(result1, result2)

def test_givens_decomposition():
# random unitary of random size
size = random.randint(2, 10)
unitary = rg.generate_random_unitary(size)

# decompose givens
theta_list, phi_list = qc.get_givens_decomposition(unitary)

# reconstruct original unitary from givens
reconstructed_matrix = qc.reconstruct_matrix_from_givens(unitary.shape[0], theta_list, phi_list)

assert numpy.allclose(unitary, reconstructed_matrix)

0 comments on commit 37b3e6a

Please sign in to comment.