Skip to content

Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.

License

Notifications You must be signed in to change notification settings

timedcy/DeepLearnToolbox

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepLearnToolbox

A Matlab toolbox for Deep Learning.

Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is Learning Deep Architectures for AI

For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng.

If you use this toolbox in your research please cite Prediction as a candidate for learning deep hierarchical models of data

@MASTERSTHESIS\{IMM2012-06284,
    author       = "R. B. Palm",
    title        = "Prediction as a candidate for learning deep hierarchical models of data",
    year         = "2012",
}

Contact: rasmusbergpalm at gmail dot com

Directories included in the toolbox

NN/ - A library for Feedforward Backpropagation Neural Networks

CNN/ - A library for Convolutional Neural Networks

DBN/ - A library for Deep Belief Networks

SAE/ - A library for Stacked Auto-Encoders

CAE/ - A library for Convolutional Auto-Encoders

util/ - Utility functions used by the libraries

data/ - Data used by the examples

tests/ - unit tests to verify toolbox is working

For references on each library check REFS.md

Setup

  1. Download.
  2. addpath(genpath('DeepLearnToolbox'));

Everything is work in progress

Example: Deep Belief Network

function test_example_DBN
load mnist_uint8;

train_x = double(train_x) / 255;
test_x  = double(test_x)  / 255;
train_y = double(train_y);
test_y  = double(test_y);

%%  ex1 train a 100 hidden unit RBM and visualize its weights
rng(0);
dbn.sizes = [100];
opts.numepochs =   1;
opts.batchsize = 100;
opts.momentum  =   0;
opts.alpha     =   1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
figure; visualize(dbn.rbm{1}.W');   %  Visualize the RBM weights

%%  ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN
rng(0);
%train dbn
dbn.sizes = [100 100];
opts.numepochs =   1;
opts.batchsize = 100;
opts.momentum  =   0;
opts.alpha     =   1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);

%unfold dbn to nn
nn = dbnunfoldtonn(dbn, 10);
nn.activation_function = 'sigm';

%train nn
opts.numepochs =  1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);

assert(er < 0.10, 'Too big error');

Example: Stacked Auto-Encoders

function test_example_SAE
load mnist_uint8;

train_x = double(train_x)/255;
test_x  = double(test_x)/255;
train_y = double(train_y);
test_y  = double(test_y);

%%  ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN
%  Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
sae = saesetup([784 100]);
sae.ae{1}.activation_function       = 'sigm';
sae.ae{1}.learningRate              = 1;
sae.ae{1}.inputZeroMaskedFraction   = 0.5;
opts.numepochs =   1;
opts.batchsize = 100;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')

% Use the SDAE to initialize a FFNN
nn = nnsetup([784 100 10]);
nn.activation_function              = 'sigm';
nn.learningRate                     = 1;
nn.W{1} = sae.ae{1}.W{1};

% Train the FFNN
opts.numepochs =   1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.16, 'Too big error');

%% ex2 train a 100-100 hidden unit SDAE and use it to initialize a FFNN
%  Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
sae = saesetup([784 100 100]);
sae.ae{1}.activation_function       = 'sigm';
sae.ae{1}.learningRate              = 1;
sae.ae{1}.inputZeroMaskedFraction   = 0.5;

sae.ae{2}.activation_function       = 'sigm';
sae.ae{2}.learningRate              = 1;
sae.ae{2}.inputZeroMaskedFraction   = 0.5;

opts.numepochs =   1;
opts.batchsize = 100;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')

% Use the SDAE to initialize a FFNN
nn = nnsetup([784 100 100 10]);
nn.activation_function              = 'sigm';
nn.learningRate                     = 1;

%add pretrained weights
nn.W{1} = sae.ae{1}.W{1};
nn.W{2} = sae.ae{2}.W{1};

% Train the FFNN
opts.numepochs =   1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');

Example: Convolutional Neural Nets

function test_example_CNN
load mnist_uint8;

train_x = double(reshape(train_x',28,28,60000))/255;
test_x = double(reshape(test_x',28,28,10000))/255;
train_y = double(train_y');
test_y = double(test_y');

%% ex1 Train a 6c-2s-12c-2s Convolutional neural network 
%will run 1 epoch in about 200 second and get around 11% error. 
%With 100 epochs you'll get around 1.2% error
rng(0)
cnn.layers = {
    struct('type', 'i') %input layer
    struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer
    struct('type', 's', 'scale', 2) %sub sampling layer
    struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer
    struct('type', 's', 'scale', 2) %subsampling layer
};
cnn = cnnsetup(cnn, train_x, train_y);

opts.alpha = 1;
opts.batchsize = 50;
opts.numepochs = 1;

cnn = cnntrain(cnn, train_x, train_y, opts);

[er, bad] = cnntest(cnn, test_x, test_y);

%plot mean squared error
figure; plot(cnn.rL);

assert(er<0.12, 'Too big error');

Example: Neural Networks

function test_example_NN
load mnist_uint8;

train_x = double(train_x) / 255;
test_x  = double(test_x)  / 255;
train_y = double(train_y);
test_y  = double(test_y);

% normalize
[train_x, mu, sigma] = zscore(train_x);
test_x = normalize(test_x, mu, sigma);

%% ex1 vanilla neural net
rng(0);
nn = nnsetup([784 100 10]);
opts.numepochs =  1;   %  Number of full sweeps through data
opts.batchsize = 100;  %  Take a mean gradient step over this many samples
[nn, L] = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);

assert(er < 0.08, 'Too big error');

% Make an artificial one and verify that we can predict it
x = zeros(1,28,28);
x(:, 14:15, 6:22) = 1;
x = reshape(x,1,28^2);
figure; visualize(x');
predicted = nnpredict(nn,x)-1;

assert(predicted == 1);
%% ex2 neural net with L2 weight decay
rng(0);
nn = nnsetup([784 100 10]);

nn.weightPenaltyL2 = 1e-4;  %  L2 weight decay
opts.numepochs =  1;        %  Number of full sweeps through data
opts.batchsize = 100;       %  Take a mean gradient step over this many samples

nn = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');


%% ex3 neural net with dropout
rng(0);
nn = nnsetup([784 100 10]);

nn.dropoutFraction = 0.5;   %  Dropout fraction 
opts.numepochs =  1;        %  Number of full sweeps through data
opts.batchsize = 100;       %  Take a mean gradient step over this many samples

nn = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');

%% ex4 neural net with sigmoid activation function
rng(0);
nn = nnsetup([784 100 10]);

nn.activation_function = 'sigm';    %  Sigmoid activation function
nn.learningRate = 1;                %  Sigm require a lower learning rate
opts.numepochs =  1;                %  Number of full sweeps through data
opts.batchsize = 100;               %  Take a mean gradient step over this many samples

nn = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');

%% ex5 plotting functionality
rng(0);
nn = nnsetup([784 20 10]);
opts.numepochs         = 5;            %  Number of full sweeps through data
nn.output              = 'softmax';    %  use softmax output
opts.batchsize         = 1000;         %  Take a mean gradient step over this many samples
opts.plot              = 1;            %  enable plotting

nn = nntrain(nn, train_x, train_y, opts);

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');

%% ex6 neural net with sigmoid activation and plotting of validation and training error
% split training data into training and validation data
vx   = train_x(1:10000,:);
tx = train_x(10001:end,:);
vy   = train_y(1:10000,:);
ty = train_y(10001:end,:);

rng(0);
nn                      = nnsetup([784 20 10]);     
nn.output               = 'softmax';                   %  use softmax output
opts.numepochs          = 5;                           %  Number of full sweeps through data
opts.batchsize          = 1000;                        %  Take a mean gradient step over this many samples
opts.plot               = 1;                           %  enable plotting
nn = nntrain(nn, tx, ty, opts, vx, vy);                %  nntrain takes validation set as last two arguments (optionally)

[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');

About

Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published