Skip to content

In this project, Basic Machine Learning concepts were built on Desharnais dataset to built a software effort estimation model using a linear regression model. This statistical model was developed using a non-parametric linear regression algorithm based on the K-Nearest Neighbours (KNN).

Notifications You must be signed in to change notification settings

toniesteves/sw-effort-predictive-analysis

Repository files navigation

This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable, verifiable, refutable, and/or improvable predictive models of software engineering.

If you publish material based on PROMISE data sets then, please follow the acknowledgment guidelines posted on the PROMISE repository web page http://promise.site.uottawa.ca/SERepository .

Abstract

Making decisions with a highly uncertain level is a critical problem in the area of software engineering. Predicting software quality requires high accurate tools and high-level experience. Otherwise, AI-based predictive models could be a useful tool with an accurate degree that helps on the prediction of software effort based on historical data from software development metrics. In this study, we built a software effort estimation model to predict this effort using a linear regression model. This statistical model was developed using a non-parametric linear regression algorithm based on the K-Nearest Neighbours (KNN). So, our results show the possibility of using AI methods to predict the software engineering effort prediction problem with an coefficient of determination of 76%

import math
from scipy.io import arff
from scipy.stats.stats import pearsonr
import pandas as pd
import numpy as np

from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split

# Formatação mais bonita para os notebooks
import seaborn as sns
import matplotlib.pyplot as plt

%matplotlib inline
plt.style.use('fivethirtyeight')
plt.rcParams['figure.figsize'] = (15,5)
df_desharnais = pd.read_csv('../Datasets/02.desharnais.csv',  header=0)
df_desharnais.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
id Project TeamExp ManagerExp YearEnd Length Effort Transactions Entities PointsNonAdjust Adjustment PointsAjust Language
0 1 1 1 4 85 12 5152 253 52 305 34 302 1
1 2 2 0 0 86 4 5635 197 124 321 33 315 1
2 3 3 4 4 85 1 805 40 60 100 18 83 1
3 4 4 0 0 86 5 3829 200 119 319 30 303 1
4 5 5 0 0 86 4 2149 140 94 234 24 208 1
df_desharnais.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 81 entries, 0 to 80
Data columns (total 13 columns):
id                 81 non-null int64
Project            81 non-null int64
TeamExp            81 non-null int64
ManagerExp         81 non-null int64
YearEnd            81 non-null int64
Length             81 non-null int64
Effort             81 non-null int64
Transactions       81 non-null int64
Entities           81 non-null int64
PointsNonAdjust    81 non-null int64
Adjustment         81 non-null int64
PointsAjust        81 non-null int64
Language           81 non-null int64
dtypes: int64(13)
memory usage: 8.3 KB
df_desharnais.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
id Project TeamExp ManagerExp YearEnd Length Effort Transactions Entities PointsNonAdjust Adjustment PointsAjust Language
count 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000 81.000000
mean 41.000000 41.000000 2.185185 2.530864 85.740741 11.666667 5046.308642 182.123457 122.333333 304.456790 27.629630 289.234568 1.555556
std 23.526581 23.526581 1.415195 1.643825 1.222475 7.424621 4418.767228 144.035098 84.882124 180.210159 10.591795 185.761088 0.707107
min 1.000000 1.000000 -1.000000 -1.000000 82.000000 1.000000 546.000000 9.000000 7.000000 73.000000 5.000000 62.000000 1.000000
25% 21.000000 21.000000 1.000000 1.000000 85.000000 6.000000 2352.000000 88.000000 57.000000 176.000000 20.000000 152.000000 1.000000
50% 41.000000 41.000000 2.000000 3.000000 86.000000 10.000000 3647.000000 140.000000 99.000000 266.000000 28.000000 255.000000 1.000000
75% 61.000000 61.000000 4.000000 4.000000 87.000000 14.000000 5922.000000 224.000000 169.000000 384.000000 35.000000 351.000000 2.000000
max 81.000000 81.000000 4.000000 7.000000 88.000000 39.000000 23940.000000 886.000000 387.000000 1127.000000 52.000000 1116.000000 3.000000

Applying Pearson’s correlation

In this section, the correlations between attributes of Desharnais dataset and software effort are analyzed and applicability of the regression analysis is examined. The correlation between two variables is a measure of how well the variables are related. The most common measure of correlation in statistics is the Pearson Correlation (or the Pearson Product Moment Correlation - PPMC) which shows the linear relationship between two variables.

Pearson correlation coefficient analysis produces a result between -1 and 1. A result of -1 means that there is a perfect negative correlation between the two values at all, while a result of 1 means that there is a perfect positive correlation between the two variables.

Results between 0.5 and 1.0 indicate high correlation.Correlation coefficients are used in statistics to measure how strong a relationship is between two variables. There are several types of correlation coefficient. Pearson’s correlation (also called Pearson’s R) is a correlation coefficient commonly used in linear regression.

df_desharnais.corr()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
id Project TeamExp ManagerExp YearEnd Length Effort Transactions Entities PointsNonAdjust Adjustment PointsAjust Language
id 1.000000 1.000000 -0.006007 0.214294 0.096486 0.255187 0.126153 0.265891 0.028787 0.226076 -0.207774 0.202608 0.391475
Project 1.000000 1.000000 -0.006007 0.214294 0.096486 0.255187 0.126153 0.265891 0.028787 0.226076 -0.207774 0.202608 0.391475
TeamExp -0.006007 -0.006007 1.000000 0.424687 -0.210335 0.143948 0.119529 0.103768 0.256608 0.203805 0.235629 0.222884 -0.079112
ManagerExp 0.214294 0.214294 0.424687 1.000000 -0.011519 0.211324 0.158303 0.138146 0.206644 0.207748 -0.066821 0.187399 0.205521
YearEnd 0.096486 0.096486 -0.210335 -0.011519 1.000000 -0.095027 -0.048367 0.034331 0.001686 0.028234 -0.056743 0.012106 0.342233
Length 0.255187 0.255187 0.143948 0.211324 -0.095027 1.000000 0.693280 0.620711 0.483504 0.723849 0.266086 0.714092 -0.023810
Effort 0.126153 0.126153 0.119529 0.158303 -0.048367 0.693280 1.000000 0.581881 0.510328 0.705449 0.463865 0.738271 -0.261942
Transactions 0.265891 0.265891 0.103768 0.138146 0.034331 0.620711 0.581881 1.000000 0.185041 0.886419 0.341906 0.880923 0.136778
Entities 0.028787 0.028787 0.256608 0.206644 0.001686 0.483504 0.510328 0.185041 1.000000 0.618913 0.234747 0.598401 -0.056439
PointsNonAdjust 0.226076 0.226076 0.203805 0.207748 0.028234 0.723849 0.705449 0.886419 0.618913 1.000000 0.383842 0.985945 0.082737
Adjustment -0.207774 -0.207774 0.235629 -0.066821 -0.056743 0.266086 0.463865 0.341906 0.234747 0.383842 1.000000 0.513197 -0.199167
PointsAjust 0.202608 0.202608 0.222884 0.187399 0.012106 0.714092 0.738271 0.880923 0.598401 0.985945 0.513197 1.000000 0.046672
Language 0.391475 0.391475 -0.079112 0.205521 0.342233 -0.023810 -0.261942 0.136778 -0.056439 0.082737 -0.199167 0.046672 1.000000
colormap = plt.cm.viridis
plt.figure(figsize=(10,10))
plt.title('Pearson Correlation of Features', y=1.05, size=15)
sns.set(font_scale=1.05)
sns.heatmap(df_desharnais.drop(['id'], axis=1).astype(float).corr(),linewidths=0.1,vmax=1.0, square=True,cmap=colormap, linecolor='white', annot=True)
<matplotlib.axes._subplots.AxesSubplot at 0x116178cc0>

png

Split train/test data

features = [ 'TeamExp', 'ManagerExp', 'YearEnd', 'Length', 'Transactions', 'Entities',
        'PointsNonAdjust', 'Adjustment', 'PointsAjust']

max_corr_features = ['Length', 'Transactions', 'Entities','PointsNonAdjust','PointsAjust']

X = df_desharnais[max_corr_features]
y = df_desharnais['Effort']

Models Costruction

In this study the following algorithms were used: Linear Regression and K-Nearest Neighbors Regression. The training of the regressors models were performed on 67% of the instances

1) Knn Regression

The K-Nearest Neighbor Regression is a simple algorithm that stores all available cases and predict the numerical target based on a similarity measure and it’s been used in a statistical estimation and pattern recognition as non-parametric technique classifying correctly unknown cases calculating euclidean distance between data points. In fact our choice by K-Nearest Neighbor Regression was motivated by the absence of a detailed explanation about how effort attribute value is calculated on Desharnais dataset. In the K-Nearest Neighbor Regression we choose to specify only 3 neighbors for k-neighbors queries and uniform weights, that means all points in each neighborhood are weighted equally.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=30)

neigh = KNeighborsRegressor(n_neighbors=3, weights='uniform')
neigh.fit(X_train, y_train) 
print(neigh.score(X_test, y_test))
0.7379861869550943

2) Linear Regression

The regression analysis aims to verify the existence of a functional relationship between a variable with one or more variables, obtaining an equation that explains the variation of the dependent variable Y, by the variation of the levels of the independent variables. The training of the Linear Regression model consists of generating a regression for the target variable Y.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=22)

model = LinearRegression()
model.fit(X_train, y_train)
print(model.score(X_test, y_test))
0.7680074954440712

3) Support Vector Machine

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=22)

parameters = {'kernel':('linear', 'rbf'), 'C':[1,2,3,4,5,6,7,8,9,10]}

svr = SVR()
LinearSVC = GridSearchCV(svr, parameters)
LinearSVC.fit(X_train, y_train)
print("Best params hash: {}".format(LinearSVC.best_params_))
print(LinearSVC.score(X_test, y_test))
Best params hash: {'C': 1, 'kernel': 'linear'}
0.735919788126071

Results

The figure shows the linear model (blue line) prediction is fairly close to Knn model effort prediction (red line), predicting the numerical target based on a similarity measure. According to the plot we observe that Linear Regression model (blue line) presents a better performance. Although Knn Regression model (red line) is fairly close to data points, the Linear Regression model shows a smaller mean squared error. It is possible to observe that the lines of both models present a slight tendency to rise, which justifies their correlation with the increase in effort. Some metrics are also highlighted by the presence of outliers.

plt.figure(figsize=(18,6))
plt.rcParams['legend.fontsize'] = 18
plt.rcParams['legend.loc']= 'upper left'
plt.rcParams['axes.labelsize']= 32

for i, feature in enumerate(max_corr_features):
   
    # Knn Regression Model 
    xs, ys = zip(*sorted(zip(X_test[feature], neigh.fit(X_train, y_train).predict(X_test))))
    
    # Linear Regression Model 
    model_xs, model_ys = zip(*sorted(zip(X_test[feature], model.fit(X_train, y_train).predict(X_test))))
    
    # Support Vector Machine
    svc_model_xs, svc_model_ys = zip(*sorted(zip(X_test[feature], LinearSVC.fit(X_train, y_train).predict(X_test))))

    plt.scatter(X_test[feature], y_test, label='Real data', lw=2,alpha= 0.7, c='k' )
    plt.plot(model_xs, model_ys , lw=2, label='Linear Regression Model', c='cornflowerblue')
    plt.plot(xs, ys , lw=2,label='K Nearest Neighbors (k=3)', c='yellowgreen')
    plt.plot(svc_model_xs, svc_model_ys , lw=2,label='Support Vector Machine (Kernel=Linear)', c='gold')
    
    plt.xlabel(feature)
    plt.ylabel('Effort')
    plt.legend()
    plt.show()

png

png

png

png

png

About

In this project, Basic Machine Learning concepts were built on Desharnais dataset to built a software effort estimation model using a linear regression model. This statistical model was developed using a non-parametric linear regression algorithm based on the K-Nearest Neighbours (KNN).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published