Project Page: http://guanghan.info/projects/guided-fractal/
Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.
Source code release of the paper for reproduction of experimental results, and to aid researchers in future research.
- Python 2.7 or Python 3.3+
- Modified Caffe
-
bash ./get_dataset.sh
-
Models
bash ./get_models.sh
-
Predictions (optional)
bash ./get_preds.sh
-
Generate cropped patches from the dataset for testing:
cd testing/ matlab gen_cropped_LSP_test_images.m matlab gen_cropped_MPII_test_images.m cd -
This will generate images with 368-by-368 resolution.
-
Reproduce the results with the pre-trained model:
cd testing/ python .test.py cd -
You can choose different dataset to test on, with different models. You can also choose different settings in test.py, e.g., with or without flipping, scaling, cross-heatmap regression, etc.
-
Generate Annotations
cd training/Annotations/ matlab MPI.m LEEDS.m cd -
This will generate annotations in json files.
-
Generate LMDB
python ./training/Data/genLMDB.py
This will load images from dataset and annotations from json files, and generate lmdb files for caffe training.
-
Generate Prototxt files (optional)
python ./training/GNet/scripts/gen_GNet.py python ./training/GNet/scripts/gen_fractal.py python ./training/GNet/scripts/gen_hourglass.py
-
Training:
bash ./training/train.sh
cd testing/eval_LSP/; matlab test_evaluation_lsp.m; cd../
cd testing/eval_MPII/; matlab test_evaluation_mpii_test.m
More Qualitative results can be found in the project page. Quantitative results please refer to the arxiv paper.
GNet-pose is released under the Apache License Version 2.0 (refer to the LICENSE file for details).
The details are published as a technical report on arXiv. If you use the code and models, please cite the following paper: arXiv:1705.02407.
@article{ning2017knowledge,
title={Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation},
author={Ning, Guanghan and Zhang, Zhi and He, Zhihai},
journal={arXiv preprint arXiv:1705.02407},
year={2017}
}
[1] Andriluka M, Pishchulin L, Gehler P, et al. "2d human pose estimation: New benchmark and state of the art analysis." CVPR (2014).
[2] Sam Johnson and Mark Everingham. "Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation." BMVC (2010).