-
Notifications
You must be signed in to change notification settings - Fork 113
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Implement collision source terms for multi-ion MHD #2213
base: main
Are you sure you want to change the base?
Changes from all commits
23d74ec
f021401
9ef9542
e611c30
5dabad1
5c772f6
6104177
98949a4
02aca9b
0971c19
fde0b1d
51f651e
22bf32f
f6ad4f7
1b036f4
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,152 @@ | ||||||
|
||||||
using OrdinaryDiffEq | ||||||
using Trixi | ||||||
|
||||||
############################################################################### | ||||||
# This elixir describes the frictional slowing of an ionized carbon fluid (C6+) with respect to another species | ||||||
# of a background ionized carbon fluid with an initially nonzero relative velocity. It is the second slow-down | ||||||
# test (fluids with different densities) described in: | ||||||
# - Ghosh, D., Chapman, T. D., Berger, R. L., Dimits, A., & Banks, J. W. (2019). A | ||||||
# multispecies, multifluid model for laser–induced counterstreaming plasma simulations. | ||||||
# Computers & Fluids, 186, 38-57. | ||||||
# | ||||||
# This is effectively a zero-dimensional case because the spatial gradients are zero, and we use it to test the | ||||||
# collision source terms. | ||||||
# | ||||||
# To run this physically relevant test, we use the following characteristic quantities to non-dimensionalize | ||||||
# the equations: | ||||||
# Characteristic length: L_inf = 1.00E-03 m (domain size) | ||||||
# Characteristic density: rho_inf = 1.99E+00 kg/m^3 (corresponds to a number density of 1e20 cm^{-3}) | ||||||
# Characteristic vacuum permeability: mu0_inf = 1.26E-06 N/A^2 (for equations with mu0 = 1) | ||||||
# Characteristic gas constant: R_inf = 6.92237E+02 J/kg/K (specific gas constant for a Carbon fluid) | ||||||
# Characteristic velocity: V_inf = 1.00E+06 m/s | ||||||
# | ||||||
# The results of the paper can be reproduced using `source_terms = source_terms_collision_ion_ion` (i.e., only | ||||||
# taking into account ion-ion collisions). However, we include ion-electron collisions assuming a constant | ||||||
# electron temperature of 1 keV in this elixir to test the function `source_terms_collision_ion_electron` | ||||||
|
||||||
# Return the electron pressure for a constant electron temperature Te = 1 keV | ||||||
function electron_pressure_constantTe(u, equations::IdealGlmMhdMultiIonEquations2D) | ||||||
@unpack charge_to_mass = equations | ||||||
Te = 0.008029953773 # [nondimensional] = 1 [keV] | ||||||
total_electron_charge = zero(eltype(u)) | ||||||
for k in eachcomponent(equations) | ||||||
rho_k = u[3 + (k - 1) * 5 + 1] | ||||||
total_electron_charge += rho_k * charge_to_mass[k] | ||||||
end | ||||||
|
||||||
# Boltzmann constant divided by elementary charge | ||||||
kB_e = 7.86319034E-02 #[nondimensional] | ||||||
|
||||||
return total_electron_charge * kB_e * Te | ||||||
end | ||||||
|
||||||
# Return the constant electron temperature Te = 1 keV | ||||||
function electron_temperature_constantTe(u, equations::IdealGlmMhdMultiIonEquations2D) | ||||||
return 0.008029953773 # [nondimensional] = 1 [keV] | ||||||
end | ||||||
|
||||||
# semidiscretization of the ideal MHD equations | ||||||
equations = IdealGlmMhdMultiIonEquations2D(gammas = (5 / 3, 5 / 3), | ||||||
charge_to_mass = (76.3049060157692000, | ||||||
76.3049060157692000), # [nondimensional] | ||||||
gas_constants = (1.0, 1.0), # [nondimensional] | ||||||
molar_masses = (1.0, 1.0), # [nondimensional] | ||||||
ion_ion_collision_constants = [0.0 0.4079382480442680; | ||||||
0.4079382480442680 0.0], # [nondimensional] (computed with eq (4.142) of Schunk&Nagy (2009)) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
ion_electron_collision_constants = (8.56368379833E-06, | ||||||
8.56368379833E-06), # [nondimensional] (computed with eq (9) of Ghosh et al. (2019)) | ||||||
electron_pressure = electron_pressure_constantTe, | ||||||
electron_temperature = electron_temperature_constantTe, | ||||||
initial_c_h = 0.0) # Deactivate GLM divergence cleaning | ||||||
|
||||||
# Frictional slowing of an ionized carbon fluid with respect to another background carbon fluid in motion | ||||||
function initial_condition_slow_down(x, t, equations::IdealGlmMhdMultiIonEquations2D) | ||||||
v11 = 0.65508770000000 | ||||||
v21 = 0.0 | ||||||
v2 = v3 = 0.0 | ||||||
B1 = B2 = B3 = 0.0 | ||||||
rho1 = 0.1 | ||||||
rho2 = 1.0 | ||||||
|
||||||
p1 = 0.00040170535986 | ||||||
p2 = 0.00401705359856 | ||||||
|
||||||
return prim2cons(SVector(B1, B2, B3, rho1, v11, v2, v3, p1, rho2, v21, v2, v3, p2, 0.0), | ||||||
equations) | ||||||
end | ||||||
|
||||||
# Temperature of ion 1 | ||||||
function temperature1(u, equations::IdealGlmMhdMultiIonEquations2D) | ||||||
rho_1, _ = Trixi.get_component(1, u, equations) | ||||||
p = pressure(u, equations) | ||||||
|
||||||
return p[1] / rho_1 / equations.gas_constants[1] | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This looks a bit strange - maybe add some parantheses?
Suggested change
|
||||||
end | ||||||
|
||||||
# Temperature of ion 2 | ||||||
function temperature2(u, equations::IdealGlmMhdMultiIonEquations2D) | ||||||
rho_2, _ = Trixi.get_component(2, u, equations) | ||||||
p = pressure(u, equations) | ||||||
|
||||||
return p[2] / rho_2 / equations.gas_constants[2] | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as above
Suggested change
|
||||||
end | ||||||
|
||||||
initial_condition = initial_condition_slow_down | ||||||
tspan = (0.0, 0.1) # 100 [ps] | ||||||
|
||||||
# Entropy conservative volume numerical fluxes with standard LLF dissipation at interfaces | ||||||
volume_flux = (flux_ruedaramirez_etal, flux_nonconservative_ruedaramirez_etal) | ||||||
surface_flux = (flux_lax_friedrichs, flux_nonconservative_central) | ||||||
|
||||||
solver = DGSEM(polydeg = 3, surface_flux = surface_flux, | ||||||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||||||
|
||||||
coordinates_min = (0.0, 0.0) | ||||||
coordinates_max = (1.0, 1.0) | ||||||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||||||
initial_refinement_level = 1, | ||||||
Comment on lines
+107
to
+108
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Maybe mention again here why such a coarse mesh is used? |
||||||
n_cells_max = 1_000_000) | ||||||
|
||||||
# Ion-ion and ion-electron collision source terms | ||||||
# In this particular case, we can omit source_terms_lorentz because the magnetic field is zero! | ||||||
function source_terms(u, x, t, equations::IdealGlmMhdMultiIonEquations2D) | ||||||
source_terms_collision_ion_ion(u, x, t, equations) + | ||||||
source_terms_collision_ion_electron(u, x, t, equations) | ||||||
end | ||||||
|
||||||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||||||
source_terms = source_terms) | ||||||
|
||||||
############################################################################### | ||||||
# ODE solvers, callbacks etc. | ||||||
|
||||||
ode = semidiscretize(semi, tspan) | ||||||
|
||||||
summary_callback = SummaryCallback() | ||||||
|
||||||
analysis_interval = 1 | ||||||
analysis_callback = AnalysisCallback(semi, | ||||||
save_analysis = true, | ||||||
interval = analysis_interval, | ||||||
extra_analysis_integrals = (temperature1, | ||||||
temperature2)) | ||||||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||||||
|
||||||
stepsize_callback = StepsizeCallback(cfl = 0.01) # Very small CFL due to the stiff source terms | ||||||
|
||||||
save_restart = SaveRestartCallback(interval = 100, | ||||||
save_final_restart = true) | ||||||
|
||||||
callbacks = CallbackSet(summary_callback, | ||||||
analysis_callback, alive_callback, | ||||||
save_restart, | ||||||
stepsize_callback) | ||||||
|
||||||
############################################################################### | ||||||
|
||||||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||||||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||||||
save_everystep = false, callback = callbacks); | ||||||
|
||||||
summary_callback() # print the timer summary |
Original file line number | Diff line number | Diff line change | ||||||
---|---|---|---|---|---|---|---|---|
|
@@ -183,6 +183,22 @@ divergence_cleaning_field(u, equations::AbstractIdealGlmMhdMultiIonEquations) = | |||||||
return rho | ||||||||
end | ||||||||
|
||||||||
@inline function pressure(u, equations::AbstractIdealGlmMhdMultiIonEquations) | ||||||||
B1, B2, B3, _ = u | ||||||||
p = zero(MVector{ncomponents(equations), real(equations)}) | ||||||||
for k in eachcomponent(equations) | ||||||||
rho, rho_v1, rho_v2, rho_v3, rho_e = get_component(k, u, equations) | ||||||||
v1 = rho_v1 / rho | ||||||||
v2 = rho_v2 / rho | ||||||||
v3 = rho_v3 / rho | ||||||||
v_mag = sqrt(v1^2 + v2^2 + v3^2) | ||||||||
gamma = equations.gammas[k] | ||||||||
p[k] = (gamma - 1) * | ||||||||
(rho_e - 0.5f0 * rho * v_mag^2 - 0.5f0 * (B1^2 + B2^2 + B3^2)) | ||||||||
Comment on lines
+194
to
+197
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is a little inconsistent as there is |
||||||||
end | ||||||||
return SVector{ncomponents(equations), real(equations)}(p) | ||||||||
end | ||||||||
|
||||||||
#Convert conservative variables to primitive | ||||||||
function cons2prim(u, equations::AbstractIdealGlmMhdMultiIonEquations) | ||||||||
@unpack gammas = equations | ||||||||
|
@@ -471,4 +487,172 @@ end | |||||||
|
||||||||
return dissipation | ||||||||
end | ||||||||
|
||||||||
@doc raw""" | ||||||||
source_terms_collision_ion_ion(u, x, t, | ||||||||
equations::AbstractIdealGlmMhdMultiIonEquations) | ||||||||
|
||||||||
Compute the ion-ion collision source terms for the momentum and energy equations of each ion species as | ||||||||
```math | ||||||||
\begin{aligned} | ||||||||
\vec{s}_{\rho_k \vec{v}_k} =& \rho_k\sum_{k'}\bar{\nu}_{kk'}(\vec{v}_{k'} - \vec{v}_k),\\ | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I assume you have |
||||||||
s_{E_k} =& | ||||||||
3 \sum_{k'} \left( | ||||||||
\bar{\nu}_{kk'} \frac{\rho_k M_1}{M_{k'} + M_k} R_1 (T_{k'} - T_k) | ||||||||
\right) + | ||||||||
\sum_{k'} \left( | ||||||||
\bar{\nu}_{kk'} \rho_k \frac{M_{k'}}{M_{k'} + M_k} \|\vec{v}_{k'} - \vec{v}_k\|^2 | ||||||||
\right) | ||||||||
+ | ||||||||
\vec{v}_k \cdot \vec{s}_{\rho_k \vec{v}_k}, | ||||||||
\end{aligned} | ||||||||
``` | ||||||||
where ``M_k`` is the molar mass of ion species `k` provided in `equations.molar_masses`, | ||||||||
``R_k`` is the specific gas constant of ion species `k` provided in `equations.gas_constants`, and | ||||||||
``\bar{\nu}_{kk'}`` is the effective collision frequency of species `k` with species `k'`, which is computed as | ||||||||
```math | ||||||||
\begin{aligned} | ||||||||
\bar{\nu}_{kk'} = \bar{\nu}^1_{kk'} \tilde{B}_{kk'} \frac{\rho_{k'}}{T_{k k'}^{3/2}}, | ||||||||
\end{aligned} | ||||||||
``` | ||||||||
with the so-called reduced temperature ``T_{k k'}`` and the ion-ion collision constants ``\tilde{B}_{kk'}`` provided | ||||||||
in `equations.ion_electron_collision_constants` (see [`IdealGlmMhdMultiIonEquations2D`](@ref)). | ||||||||
|
||||||||
The additional coefficient ``\bar{\nu}^1_{kk'}`` is a non-dimensional drift correction factor proposed by Rambo and | ||||||||
Denavit. | ||||||||
Comment on lines
+521
to
+522
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
|
||||||||
References: | ||||||||
- P. Rambo, J. Denavit, Interpenetration and ion separation in colliding plasmas, Physics of Plasmas 1 (1994) 4050–4060. | ||||||||
- Schunk, R. W., Nagy, A. F. (2000). Ionospheres: Physics, plasma physics, and chemistry. | ||||||||
Cambridge university press. | ||||||||
Comment on lines
+524
to
+527
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you provide the DOI here? |
||||||||
""" | ||||||||
function source_terms_collision_ion_ion(u, x, t, | ||||||||
equations::AbstractIdealGlmMhdMultiIonEquations) | ||||||||
Comment on lines
+529
to
+530
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Out of curiosity: Could one re-use this for a 2 fluid (ion-electron) Euler-Poisson Plasma approximation? |
||||||||
s = zero(MVector{nvariables(equations), eltype(u)}) | ||||||||
@unpack gas_constants, molar_masses, ion_ion_collision_constants = equations | ||||||||
|
||||||||
prim = cons2prim(u, equations) | ||||||||
|
||||||||
for k in eachcomponent(equations) | ||||||||
rho_k, v1_k, v2_k, v3_k, p_k = get_component(k, prim, equations) | ||||||||
T_k = p_k / (rho_k * gas_constants[k]) | ||||||||
|
||||||||
S_q1 = zero(eltype(u)) | ||||||||
S_q2 = zero(eltype(u)) | ||||||||
S_q3 = zero(eltype(u)) | ||||||||
S_E = zero(eltype(u)) | ||||||||
for l in eachcomponent(equations) | ||||||||
# Do not compute collisions of an ion species with itself | ||||||||
k == l && continue | ||||||||
|
||||||||
rho_l, v1_l, v2_l, v3_l, p_l = get_component(l, prim, equations) | ||||||||
T_l = p_l / (rho_l * gas_constants[l]) | ||||||||
|
||||||||
# Reduced temperature | ||||||||
T_kl = (molar_masses[l] * T_k + molar_masses[k] * T_l) / | ||||||||
(molar_masses[k] + molar_masses[l]) | ||||||||
|
||||||||
delta_v2 = (v1_l - v1_k)^2 + (v2_l - v2_k)^2 + (v3_l - v3_k)^2 | ||||||||
|
||||||||
# Compute collision frequency without drifting correction | ||||||||
v_kl = ion_ion_collision_constants[k, l] * rho_l / T_kl^(3 / 2) | ||||||||
|
||||||||
# Correct the collision frequency with the drifting effect | ||||||||
z2 = delta_v2 / (p_l / rho_l + p_k / rho_k) | ||||||||
v_kl /= (1 + (2 / (9 * pi))^(1 / 3) * z2)^(3 / 2) | ||||||||
|
||||||||
S_q1 += rho_k * v_kl * (v1_l - v1_k) | ||||||||
S_q2 += rho_k * v_kl * (v2_l - v2_k) | ||||||||
S_q3 += rho_k * v_kl * (v3_l - v3_k) | ||||||||
|
||||||||
S_E += (3 * molar_masses[1] * gas_constants[1] * (T_l - T_k) | ||||||||
+ | ||||||||
molar_masses[l] * delta_v2) * v_kl * rho_k / | ||||||||
(molar_masses[k] + molar_masses[l]) | ||||||||
end | ||||||||
|
||||||||
S_E += (v1_k * S_q1 + v2_k * S_q2 + v3_k * S_q3) | ||||||||
|
||||||||
set_component!(s, k, 0, S_q1, S_q2, S_q3, S_E, equations) | ||||||||
end | ||||||||
return SVector{nvariables(equations), real(equations)}(s) | ||||||||
end | ||||||||
|
||||||||
@doc raw""" | ||||||||
source_terms_collision_ion_electron(u, x, t, | ||||||||
equations::AbstractIdealGlmMhdMultiIonEquations) | ||||||||
|
||||||||
Compute the ion-electron collision source terms for the momentum and energy equations of each ion species. We assume ``v_e = v^+`` | ||||||||
(no effect of currents on the electron velocity). | ||||||||
|
||||||||
The collision sources read as | ||||||||
```math | ||||||||
\begin{aligned} | ||||||||
\vec{s}_{\rho_k \vec{v}_k} =& \rho_k \bar{\nu}_{ke} (\vec{v}_{e} - \vec{v}_k), | ||||||||
\\ | ||||||||
s_{E_k} =& | ||||||||
3 \left( | ||||||||
\bar{\nu}_{ke} \frac{\rho_k M_{1}}{M_k} R_1 (T_{e} - T_k) | ||||||||
\right) | ||||||||
+ | ||||||||
\vec{v}_k \cdot \vec{s}_{\rho_k \vec{v}_k}, | ||||||||
\end{aligned} | ||||||||
``` | ||||||||
where ``T_e`` is the electron temperature computed with the function `equations.electron_temperature`, | ||||||||
``M_k`` is the molar mass of ion species `k` provided in `equations.molar_masses`, | ||||||||
``R_k`` is the specific gas constant of ion species `k` provided in `equations.gas_constants`, and | ||||||||
``\bar{\nu}_{kk'}`` is the collision frequency of species `k` with the electrons, which is computed as | ||||||||
```math | ||||||||
\begin{aligned} | ||||||||
\bar{\nu}_{ke} = \tilde{B}_{ke} \frac{e n_e}{T_e^{3/2}}, | ||||||||
\end{aligned} | ||||||||
``` | ||||||||
with the total electron charge ``e n_e`` (computed assuming quasi-neutrality), and the | ||||||||
ion-electron collision coefficient ``\tilde{B}_{ke}`` provided in `equations.ion_electron_collision_constants`, | ||||||||
which is scaled with the elementary charge (see [`IdealGlmMhdMultiIonEquations2D`](@ref)). | ||||||||
|
||||||||
References: | ||||||||
- P. Rambo, J. Denavit, Interpenetration and ion separation in colliding plasmas, Physics of Plasmas 1 (1994) 4050–4060. | ||||||||
- Schunk, R. W., Nagy, A. F. (2000). Ionospheres: Physics, plasma physics, and chemistry. | ||||||||
Cambridge university press. | ||||||||
Comment on lines
+614
to
+617
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as above |
||||||||
""" | ||||||||
function source_terms_collision_ion_electron(u, x, t, | ||||||||
equations::AbstractIdealGlmMhdMultiIonEquations) | ||||||||
s = zero(MVector{nvariables(equations), eltype(u)}) | ||||||||
@unpack gas_constants, molar_masses, ion_electron_collision_constants, electron_temperature = equations | ||||||||
|
||||||||
prim = cons2prim(u, equations) | ||||||||
T_e = electron_temperature(u, equations) | ||||||||
T_e32 = T_e^(3 / 2) | ||||||||
|
||||||||
v1_plus, v2_plus, v3_plus, vk1_plus, vk2_plus, vk3_plus = charge_averaged_velocities(u, | ||||||||
equations) | ||||||||
|
||||||||
# Compute total electron charge | ||||||||
total_electron_charge = zero(real(equations)) | ||||||||
for k in eachcomponent(equations) | ||||||||
rho, _ = get_component(k, u, equations) | ||||||||
total_electron_charge += rho * equations.charge_to_mass[k] | ||||||||
end | ||||||||
|
||||||||
for k in eachcomponent(equations) | ||||||||
rho_k, v1_k, v2_k, v3_k, p_k = get_component(k, prim, equations) | ||||||||
T_k = p_k / (rho_k * gas_constants[k]) | ||||||||
|
||||||||
# Compute effective collision frequency | ||||||||
v_ke = ion_electron_collision_constants[k] * total_electron_charge / T_e32 | ||||||||
|
||||||||
S_q1 = rho_k * v_ke * (v1_plus - v1_k) | ||||||||
S_q2 = rho_k * v_ke * (v2_plus - v2_k) | ||||||||
S_q3 = rho_k * v_ke * (v3_plus - v3_k) | ||||||||
|
||||||||
S_E = 3 * molar_masses[1] * gas_constants[1] * (T_e - T_k) * v_ke * rho_k / | ||||||||
molar_masses[k] | ||||||||
|
||||||||
S_E += (v1_k * S_q1 + v2_k * S_q2 + v3_k * S_q3) | ||||||||
|
||||||||
set_component!(s, k, 0, S_q1, S_q2, S_q3, S_E, equations) | ||||||||
end | ||||||||
return SVector{nvariables(equations), real(equations)}(s) | ||||||||
end | ||||||||
end |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Could you provide the DOI here?