-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Move two-layer shallow water equations from Trixi.jl (#28)
* add two-layer swe * add elixirs * add tests * add unit test for input arguments of the 2LSWE
- Loading branch information
1 parent
4a508f2
commit 4644c7e
Showing
19 changed files
with
3,382 additions
and
1,165 deletions.
There are no files selected for viewing
61 changes: 61 additions & 0 deletions
61
examples/tree_1d_dgsem/elixir_shallowwater_twolayer_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the two-layer shallow water equations | ||
|
||
equations = ShallowWaterTwoLayerEquations1D(gravity_constant = 10.0, rho_upper = 0.9, | ||
rho_lower = 1.0) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = sqrt(2.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
95 changes: 95 additions & 0 deletions
95
examples/tree_1d_dgsem/elixir_shallowwater_twolayer_dam_break.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the two-layer shallow water equations for a dam break | ||
# test with a discontinuous bottom topography function to test entropy conservation | ||
|
||
equations = ShallowWaterTwoLayerEquations1D(gravity_constant = 9.81, H0 = 2.0, | ||
rho_upper = 0.9, rho_lower = 1.0) | ||
|
||
# Initial condition of a dam break with a discontinuous water heights and bottom topography. | ||
# Works as intended for TreeMesh1D with `initial_refinement_level=5`. If the mesh | ||
# refinement level is changed the initial condition below may need changed as well to | ||
# ensure that the discontinuities lie on an element interface. | ||
function initial_condition_dam_break(x, t, equations::ShallowWaterTwoLayerEquations1D) | ||
v1_upper = 0.0 | ||
v1_lower = 0.0 | ||
|
||
# Set the discontinuity | ||
if x[1] <= 10.0 | ||
H_lower = 2.0 | ||
H_upper = 4.0 | ||
b = 0.0 | ||
else | ||
H_lower = 1.5 | ||
H_upper = 3.0 | ||
b = 0.5 | ||
end | ||
|
||
return prim2cons(SVector(H_upper, v1_upper, H_lower, v1_lower, b), equations) | ||
end | ||
|
||
initial_condition = initial_condition_dam_break | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a non-periodic mesh | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = 20.0 | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 5, | ||
n_cells_max = 10000, | ||
periodicity = false) | ||
|
||
boundary_condition = boundary_condition_slip_wall | ||
|
||
# create the semidiscretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_condition) | ||
|
||
############################################################################### | ||
# ODE solvers | ||
|
||
tspan = (0.0, 0.4) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
############################################################################### | ||
# Callbacks | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (energy_total, | ||
energy_kinetic, | ||
energy_internal)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
87 changes: 87 additions & 0 deletions
87
examples/tree_1d_dgsem/elixir_shallowwater_twolayer_well_balanced.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the two-layer shallow water equations to test well-balancedness | ||
|
||
equations = ShallowWaterTwoLayerEquations1D(gravity_constant = 1.0, H0 = 0.6, | ||
rho_upper = 0.9, rho_lower = 1.0) | ||
|
||
""" | ||
initial_condition_fjordholm_well_balanced(x, t, equations::ShallowWaterTwoLayerEquations1D) | ||
Initial condition to test well balanced with a bottom topography from Fjordholm | ||
- Ulrik Skre Fjordholm (2012) | ||
Energy conservative and stable schemes for the two-layer shallow water equations. | ||
[DOI: 10.1142/9789814417099_0039](https://doi.org/10.1142/9789814417099_0039) | ||
""" | ||
function initial_condition_fjordholm_well_balanced(x, t, | ||
equations::ShallowWaterTwoLayerEquations1D) | ||
inicenter = 0.5 | ||
x_norm = x[1] - inicenter | ||
r = abs(x_norm) | ||
|
||
H_lower = 0.5 | ||
H_upper = 0.6 | ||
v1_upper = 0.0 | ||
v1_lower = 0.0 | ||
b = r <= 0.1 ? 0.2 * (cos(10 * pi * (x[1] - 0.5)) + 1) : 0.0 | ||
return prim2cons(SVector(H_upper, v1_upper, H_lower, v1_lower, b), equations) | ||
end | ||
|
||
initial_condition = initial_condition_fjordholm_well_balanced | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_es_ersing_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = 0.0 | ||
coordinates_max = 1.0 | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 4, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 10.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 1000 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
save_analysis = false, | ||
extra_analysis_integrals = (lake_at_rest_error,)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 1000, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
61 changes: 61 additions & 0 deletions
61
examples/tree_2d_dgsem/elixir_shallowwater_twolayer_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the two-layer shallow water equations | ||
|
||
equations = ShallowWaterTwoLayerEquations2D(gravity_constant = 10.0, rho_upper = 0.9, | ||
rho_lower = 1.0) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, | ||
surface_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal), | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (sqrt(2.0), sqrt(2.0)) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 20_000, | ||
periodicity = true) | ||
|
||
# Create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 500 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 500, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
# use a Runge-Kutta method with automatic (error based) time step size control | ||
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8, | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
82 changes: 82 additions & 0 deletions
82
examples/tree_2d_dgsem/elixir_shallowwater_twolayer_well_balanced.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
using TrixiShallowWater | ||
|
||
############################################################################### | ||
# Semidiscretization of the two-layer shallow water equations with a bottom topography function | ||
# to test well-balancedness | ||
|
||
equations = ShallowWaterTwoLayerEquations2D(gravity_constant = 9.81, H0 = 0.6, | ||
rho_upper = 0.9, rho_lower = 1.0) | ||
|
||
# An initial condition with constant total water height, zero velocities and a bottom topography to | ||
# test well-balancedness | ||
function initial_condition_well_balanced(x, t, equations::ShallowWaterTwoLayerEquations2D) | ||
H_lower = 0.5 | ||
H_upper = 0.6 | ||
v1_upper = 0.0 | ||
v2_upper = 0.0 | ||
v1_lower = 0.0 | ||
v2_lower = 0.0 | ||
b = (((x[1] - 0.5)^2 + (x[2] - 0.5)^2) < 0.04 ? | ||
0.2 * (cos(4 * pi * sqrt((x[1] - 0.5)^2 + (x[2] + | ||
-0.5)^2)) + 1) : 0.0) | ||
|
||
return prim2cons(SVector(H_upper, v1_upper, v2_upper, H_lower, v1_lower, v2_lower, b), | ||
equations) | ||
end | ||
|
||
initial_condition = initial_condition_well_balanced | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal) | ||
surface_flux = (flux_es_ersing_etal, flux_nonconservative_ersing_etal) | ||
solver = DGSEM(polydeg = 3, surface_flux = surface_flux, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the TreeMesh and setup a periodic mesh | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (1.0, 1.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 10_000, | ||
periodicity = true) | ||
|
||
# Create the semi discretization object | ||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solver | ||
|
||
tspan = (0.0, 10.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 1000 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
extra_analysis_integrals = (lake_at_rest_error,)) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.0) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 1000, | ||
save_initial_solution = true, | ||
save_final_solution = true) | ||
|
||
callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
Oops, something went wrong.