Skip to content

Commit

Permalink
Working on DIS scale variations at N3LO accuracy
Browse files Browse the repository at this point in the history
  • Loading branch information
vbertone committed Nov 14, 2023
1 parent 2232459 commit 0ce5e9b
Show file tree
Hide file tree
Showing 20 changed files with 2,612 additions and 1,036 deletions.
Binary file modified docs/latex/pdf/CCDIS.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/DrellYanTMD.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/EvolDIS.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/EvolutionCode.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/GPDs.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/IntegralStucture.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/Interpolation.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/JetTMD.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/MSbarMass.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/MatchingConditions.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/QCD_QED_common_basis.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/SIDISCollinear.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/SIDISTMD.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/Statistics.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/StructureFunctions.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/TMDEvolution.pdf
Binary file not shown.
Binary file modified docs/latex/pdf/Transversity.pdf
Binary file not shown.
176 changes: 126 additions & 50 deletions docs/latex/src/StructureFunctions.tex
Original file line number Diff line number Diff line change
Expand Up @@ -723,58 +723,90 @@ \section{Renormalisation and factorisation scale variations}
Choosing $t=0$ in Eq.~(\ref{expDGLAP}), that is equivalent to setting
$\mu_F=Q$, gives:
\begin{equation}
f_i(0) = \left\{1-a_s(t_F) t_F
\begin{array}{rcl}
f_i(0) &=&\displaystyle \Bigg\{1-a_s(t_F) t_F
P_{ij}^{(0)} + a_s^2(t_F)\left[-t_F P_{ij}^{(1)}+ t_F^2 \frac12\left(
P_{il}^{(0)}\otimes P_{lj}^{(0)} - \beta_0 P_{ij}^{(0)}
\right)\right]\right\}\otimes f_j(t_F) + \mathcal{O}(a_s^3)\,.
\right)\right]\\
\\
&+&\displaystyle a_s^3(t_F)\Bigg[ \frac12 t_F^2 \left(P_{il}
^{(0)}\otimes P_{lj} ^{(1)}+P_{il} ^{(1)} \otimes P_{lj}
^{(0)}\right)-\frac{1}{2} t_F^2 \beta _1 P_{ij}
^{(0)}+\frac{1}{2} t_F^3\beta _0 P_{il} ^{(0)}\otimes P_{lj}
^{(0)}\\
\\
&-&\displaystyle \frac{1}{3} t_F^3\beta _0^2 P_{ij}^{(0)}-\frac{1}{6}t_F^3 P_{il} ^{(0)}\otimes P_{lk} ^{(0)} \otimes
P_{kj} ^{(0)}-t_F^2\beta _0 P_{ij} ^{(1)}- t_F P_{ij} ^{(2)}\Bigg]\Bigg\}\otimes f_j(t_F) + \mathcal{O}(a_s^4)\,.
\end{array}
\label{expDGLAP1}
\end{equation}
In addition, using Eq.~(\ref{BETAsimp}), one easily finds:
\begin{equation}
a_s(t_F)=
a_s(t_R)\left[1+a_s(t_R)\beta_{0}(t_R-t_F)+\mathcal{O}(a_s^2)\right]\,,
a_s(t_R)\left[1+a_s(t_R)\beta_{0}(t_R-t_F)+a_s^2(t_R)\left(\beta_{1} (t_R-t_F)+\beta_{0}^2 (t_R-t_F)^2\right)+\mathcal{O}(a_s^3)\right]\,,
\label{BETAexp}
\end{equation}
which can be plugged into Eq.~(\ref{expDGLAP1}) to give:
\begin{equation}
f_i(0) = \left\{1-a_s(t_R) t_F
\begin{array}{rcl}
f_i(0) &=&\displaystyle \Bigg\{1-a_s(t_R) t_F
P_{ij}^{(0)} + a_s^2(t_R)\left[-t_F P_{ij}^{(1)}+ t_F^2 \frac12\left(
P_{il}^{(0)}\otimes P_{lj}^{(0)} + \beta_0 P_{ij}^{(0)} \right)-
t_Ft_R\beta_{0}P_{ij}^{(0)}\right]\right\}\otimes f_j(t_F) +
\mathcal{O}(a_s^3)\,.
t_Ft_R\beta_{0}P_{ij}^{(0)}\right]\\
\\
&+&\displaystyle a_s^3(t_R)\Bigg[\frac{1}{2} t_F^2 \left(P_{il}
^{(0)} P_{lj} ^{(1)}+P_{il} ^{(1)} P_{lj}
^{(0)}\right)+\frac{1}{2} t_F^2 \beta _1 P_{ij} ^{(0)}-t_F t_R
\beta _1 P_{ij} ^{(0)}-\frac{1}{2} t_F^3\beta _0 P_{il}
^{(0)}\otimes P_{lj} ^{(0)}\\
\\
&-&\displaystyle \frac{1}{3} t_F^3\beta _0^2 P_{ij} ^{(0)}-\frac{1}{6}
t_F^3 P_{il} ^{(0)}\otimes P_{lk} ^{(0)}\otimes P_{kj} ^{(0)}+
t_F^2 t_R\beta _0 P_{ik} ^{(0)}\otimes P_{kj} ^{(0)}+ t_F^2 t_R
\beta _0^2 P_{ij} ^{(0)}- t_F t_R^2 \beta _0^2 P_{ij} ^{(0)}\\
\\
&+&\displaystyle t_F^2\beta _0 P_{ij} ^{(1)}-2 t_F t_R \beta _0 P_{ij} ^{(1)}- t_F P_{ij} ^{(2)}\Bigg]\Bigg\}\otimes f_j(t_F) +
\mathcal{O}(a_s^4)\,.
\end{array}
\label{expDGLAP2}
\end{equation}
This equality can be conveniently written as:
\begin{equation}
f_i(0) =\sum_{k=0}^3a_s^k(t_R)f_i^{[k]}(t_R,t_F)+
\mathcal{O}(a_s^4)\,,
\label{expDGLAP3}
\end{equation}
where the coefficients $f_i^{[k]}(t_R,t_F)$ can be read off from
Eq.~(\ref{expDGLAP2}).

It is also useful to consider $t_R=0$ in Eq.~(\ref{BETAexp}), that is
equivalent to set $\mu_R=Q$, which gives:
\begin{equation}
a_s(0)=
a_s(t_R)\left[1+a_s(t_R)\beta_{0}t_R+\mathcal{O}(a_s^2)\right]\,.
a_s(t_R)\left[1+a_s(t_R)\beta_{0}t_R+a_s^2(t_R)\left(\beta_{1} t_R+\beta_{0}^2t_R^2\right) \right]+\mathcal{O}(a_s^4)\,.
\label{BETAexp1}
\end{equation}

We are now ready to use these equations to derive the scale variation
terms to be included in ZM structure functions. Truncating the
perturbative series to $\mathcal{O}(\alpha_s^2)$, they are written in
terms of PDFs and coefficient functions as:
\begin{equation}
F(t_R,t_F) / x = \left[\sum_{k=0}^{2} a_s^k(t_R)
\widetilde{\mathcal{C}}_i^{(k)}(t_R,t_F)\right]\otimes f_i(t_F)\,,
F(t_R,t_F) / x = \left[\sum_{k=0}^{3} a_s^k(t_R)
\widetilde{\mathcal{C}}_i^{(k)}(t_R,t_F)\right]\otimes f_i(t_F) + \mathcal{O}(a_s^4)\,,
\label{NonZeroScales}
\end{equation}
where the symbol $\otimes$ represents the convolution that is not
necessary to write explicitly here. Since structure functions are
physically observable, they must be renormalisation and factorisation
scale invariant, that is:
where the symbol $\otimes$ represents the convolution. Since structure
functions are physically observable, they must be renormalisation and
factorisation scale invariant, that is:
\begin{equation}
F(t_R,t_F) = F(0,0)\,,
\label{invariance}
\end{equation}
up to subleading, \textit{i.e.} $\mathcal{O}(\alpha_s^3)$,
corrections. Since:
order by order in perturbation theory. Since:
\begin{equation}
F(0,0) / x = \left[\sum_{k=0}^{2}
F(0,0) / x = \left[\sum_{k=0}^{3}
a_s^k(0) \widetilde{C}_i^{(k)}\right]\otimes
f_i(0)\,,
f_i(0) + \mathcal{O}(a_s^4)\,,
\label{ZeroScales}
\end{equation}
where $\widetilde{C}_i^{(k)}$ are the usual perturbative contributions
Expand All @@ -783,44 +815,88 @@ \section{Renormalisation and factorisation scale variations}
identity in Eq.~(\ref{invariance}). By doing so, one finds the
explicit expression of the ``generalised'' coefficient functions
$\widetilde{\mathcal{C}}_i^{(k)}(t_R,t_F)$ that include also the scale
variation terms. The result is:
\begin{equation}
\begin{array}{rcl}
F(0,0)/x &=&\bigg\{ \widetilde{C}_j^{(0)} \\ \\
&+&\displaystyle a_s(t_R)\left[\widetilde{C}_j^{(1)}- t_F
\widetilde{C}_i^{(0)} \otimes P_{ij}^{(0)}\right]\\ \\
&+&\displaystyle a_s^2(t_R)\bigg[\widetilde{C}_j^{(2)} + t_R\beta_0
\widetilde{C}_j^{(1)} -t_F \left(\widetilde{C}_i^{(0)} \otimes
P_{ij}^{(1)}+\widetilde{C}_i^{(1)} \otimes P_{ij}^{(0)}\right)\\ \\
&+&\displaystyle \frac{t_F^2}2 \widetilde{C}_i^{(0)} \otimes \left(
P_{il}^{(0)}\otimes P_{lj}^{(0)} + \beta_0 P_{ij}^{(0)} \right)-
t_Ft_R\beta_{0}\widetilde{C}_i^{(0)} \otimes
P_{ij}^{(0)}\bigg]\bigg\}\otimes f_j(t_F)+\mathcal{O}(a_s^3)\,.
\end{array}
\end{equation}
Finally, using the identity in Eq.~(\ref{invariance}), it is easy to
find that:
variation terms. It is convenient to first compute renormalisation
scale variations while leaving $t_F=0$:
\begin{equation}
\begin{array}{rcl}
\displaystyle
\widetilde{\mathcal{C}}_j^{(0)}(t_R,t_F) &=& \displaystyle
\widetilde{\mathcal{C}}_j^{(0)}(t_R,0) &=& \displaystyle
\widetilde{C}_j^{(0)} \\ \\ \displaystyle
\widetilde{\mathcal{C}}_j^{(1)}(t_R,t_F) &=& \displaystyle
\widetilde{C}_j^{(1)}-t_F \widetilde{C}_i^{(0)} \otimes P_{ij}^{(0)}
\\ \\ \displaystyle \widetilde{\mathcal{C}}_j^{(2)}(t_R,t_F) &=&
\displaystyle \widetilde{C}_j^{(2)} + t_R\beta_0 \widetilde{C}_j^{(1)}
-t_F \left(\widetilde{C}_i^{(0)} \otimes
P_{ij}^{(1)}+\widetilde{C}_i^{(1)} \otimes P_{ij}^{(0)}\right)\\ \\
&+&\displaystyle\frac{t_F^2}2 \widetilde{C}_i^{(0)} \otimes \left(
P_{il}^{(0)}\otimes P_{lj}^{(0)} + \beta_0 P_{ij}^{(0)} \right)-
t_Ft_R\beta_{0}\widetilde{C}_i^{(0)} \otimes P_{ij}^{(0)}\,.
\widetilde{\mathcal{C}}_j^{(1)}(t_R,0) &=& \displaystyle
\widetilde{C}_j^{(1)}\\
\\
\displaystyle \widetilde{\mathcal{C}}_j^{(2)}(t_R,0) &=&
\displaystyle
\widetilde{C}_j^{(2)}
+
t_R\beta_0
\widetilde{C}_j^{(1)}\,,\\
\\
\displaystyle \widetilde{\mathcal{C}}_j^{(3)}(t_R,0) &=&
\displaystyle
\widetilde{C}_j^{(3)}+2 t_R\beta _0 \widetilde{C}_j^{(2)}
+t_R \left(\beta_1 +\beta _0^2 t_R\right) \widetilde{C}_j^{(1)}\,,
\end{array}
\label{generalizedCF}
\label{CFtR}
\end{equation}
so that:
\begin{equation}
F(t_R,0) / x = \left[\sum_{k=0}^{3} a_s^k(t_R)
\widetilde{\mathcal{C}}_i^{(k)}(t_R,0)\right]\otimes f_i(0) + \mathcal{O}(a_s^4)\,.
\label{NonZeroScalestR}
\end{equation}
We can now use Eq.~(\ref{expDGLAP3}) to express the PDF $f(0)$ in
terms of $f(t_F)$ finally obtaining:
\begin{equation}
F(t_R,0) / x = \sum_{k=0}^{3} a_s^k(t_R)
\sum_{j=0}^{k}\widetilde{\mathcal{C}}_i^{(k-j)}(t_R,0)\otimes f_i^{[j]}(t_R,t_F) + \mathcal{O}(a_s^4)\,.
\label{NonZeroScalestRtF}
\end{equation}
Unsurprisingly, setting $\mu_F=\mu_R=Q$, that results in $t_F=t_R=0$,
one finds
$\widetilde{\mathcal{C}}_j^{(k)}(0,0) =\widetilde{C}_j^{(k)}$ as
required by construction.
In the absence of factorisation scale variations, only the term with $j=0$
contributes to the inner sum.


% \newpage
% The result is:
% \begin{equation}
% \begin{array}{rcl}
% F(0,0)/x &=&\bigg\{ \widetilde{C}_j^{(0)} \\ \\
% &+&\displaystyle a_s(t_R)\left[\widetilde{C}_j^{(1)}- t_F
% \widetilde{C}_i^{(0)} \otimes P_{ij}^{(0)}\right]\\ \\
% &+&\displaystyle a_s^2(t_R)\bigg[\widetilde{C}_j^{(2)} + t_R\beta_0
% \widetilde{C}_j^{(1)} -t_F \left(\widetilde{C}_i^{(0)} \otimes
% P_{ij}^{(1)}+\widetilde{C}_i^{(1)} \otimes P_{ij}^{(0)}\right)\\ \\
% &+&\displaystyle \frac{t_F^2}2 \widetilde{C}_i^{(0)} \otimes \left(
% P_{il}^{(0)}\otimes P_{lj}^{(0)} + \beta_0 P_{ij}^{(0)} \right)-
% t_Ft_R\beta_{0}\widetilde{C}_i^{(0)} \otimes
% P_{ij}^{(0)}\bigg]\\
% \\
% &+&\displaystyle a_s^3(t_R)\bigg[\widetilde{C}_j^{(3)} \bigg]\bigg\}\otimes f_j(t_F)+\mathcal{O}(a_s^4)\,.
% \end{array}
% \end{equation}
% Finally, using the identity in Eq.~(\ref{invariance}), it is easy to
% find that:
% \begin{equation}
% \begin{array}{rcl}
% \displaystyle
% \widetilde{\mathcal{C}}_j^{(0)}(t_R,t_F) &=& \displaystyle
% \widetilde{C}_j^{(0)} \\ \\ \displaystyle
% \widetilde{\mathcal{C}}_j^{(1)}(t_R,t_F) &=& \displaystyle
% \widetilde{C}_j^{(1)}-t_F \widetilde{C}_i^{(0)} \otimes P_{ij}^{(0)}
% \\ \\ \displaystyle \widetilde{\mathcal{C}}_j^{(2)}(t_R,t_F) &=&
% \displaystyle \widetilde{C}_j^{(2)} + t_R\beta_0 \widetilde{C}_j^{(1)}
% -t_F \left(\widetilde{C}_i^{(0)} \otimes
% P_{ij}^{(1)}+\widetilde{C}_i^{(1)} \otimes P_{ij}^{(0)}\right)\\ \\
% &+&\displaystyle\frac{t_F^2}2 \widetilde{C}_i^{(0)} \otimes \left(
% P_{il}^{(0)}\otimes P_{lj}^{(0)} + \beta_0 P_{ij}^{(0)} \right)-
% t_Ft_R\beta_{0}\widetilde{C}_i^{(0)} \otimes P_{ij}^{(0)}\,.
% \end{array}
% \label{generalizedCF}
% \end{equation}
% Unsurprisingly, setting $\mu_F=\mu_R=Q$, that results in $t_F=t_R=0$,
% one finds
% $\widetilde{\mathcal{C}}_j^{(k)}(0,0) =\widetilde{C}_j^{(k)}$ as
% required by construction.

In order to provide an operative formulation of scale variations, it
is necessary to specify the basis in which PDFs are expressed. The
Expand Down
Loading

0 comments on commit 0ce5e9b

Please sign in to comment.