Skip to content

Latest commit

 

History

History
executable file
·
141 lines (119 loc) · 4 KB

README.md

File metadata and controls

executable file
·
141 lines (119 loc) · 4 KB

Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation

Code for "Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation".

Installation

Follow the instructions in MMDetection3D:

Step 0. Install MMCV using MIM.

pip install openmim
mim install mmcv-full==1.3.10

Step 1. Install MMDetection.

pip install mmdet==2.14.0

Step 2. Install MMSegmentation.

pip install mmsegmentation

Step 3. Clone the DAS repository.

git clone https://github.com/wangzt-halo/das.git
cd das

Step 4. Install build requirements and then install DAS.

pip install -v -e .  # or "python setup.py develop"

Prepare Data

Download Datasets

CMU Panoptic

Download CMU Panoptic from Joo et al..
Process raw data.

python mytools/panoptic2coco.py --root /path/to/panoptic

MuCo-3DHP and MuPoTS-3D

Download MuCo-3DHP and MuPoTS-3D from Moon et al..
Process raw data.

python mytools/muco2coco.py --root /path/to/muco

COCO

Download COCO from COCO Dataset.

Directory Structure

${ROOT}
|-- data
|   |-- panoptic
|   |   |-- 160226_haggling1
|   |   |   |-- hdImgs
|   |   |   |   |-- 00_16
|   |   |   |   |-- 00_30
|   |   |-- 160422_haggling1
|   |   |-- 160226_mafia1
|   |   |-- 160422_mafia2
|   |   |-- 160226_ultimatum1
|   |   |-- 160422_ultimatum1
|   |   |-- 160906_pizza1
|   |   |-- annotations
|   |   |   |-- train.json
|   |   |   |-- haggling.json
|   |   |   |-- mafia.json
|   |   |   |-- ultimatum.json
|   |   |   |-- pizza.json
|   |-- coco
|   |   |-- train2017
|   |   |-- annotations
|   |   |   |-- person_keypoints_train2017.json
|   |-- muco
|   |   |-- unaugmented_set
|   |   |-- augmented_set
|   |   |-- annotations
|   |   |   |-- train_all_interv1.json
|   |-- mupots
|   |   |-- TS1
|   |   |   |-- img_000000.jpg
|   |   |   |-- ...
|   |   |-- ...
|   |   |-- TS20
|   |   |-- annotations
|   |   |   |-- MuPoTS-3D.json

Pretrained Model

Download the pretrained MSPN models from MMPose.
Put the models in ${ROOT}/weights/

We provide the checkpoint on CMU Panoptic dataset. [Checkpoint]

Training and Evaluation

Train on CMU Panoptic dataset:

bash tools/dist_train.py configs/das/exp_panoptic.py 4

Evaluate on CMU Panoptic dataset:

bash tools/dist_test.py configs/das/exp_panoptic.py work_dirs/exp_panoptic/latest.pth 4 --eval mpjpe

Train on MUCO-3DHP dataset:

bash tools/dist_train.py configs/das/exp_mupots.py 4

Evaluate on MuPoTS-3D dataset:

bash tools/dist_test.py configs/das/exp_mupots.py work_dirs/exp_mupots/latest.pth 4 --eval pck

Acknowledgement

This project is not possible without multiple great open-sourced code bases. We list some notable examples below.

Bibtex

If this work is helpful for your research, please consider citing the following BibTeX entry.

@inproceedings{wang2022distribution,
  title={Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation},
  author={Wang, Zitian and Nie, Xuecheng and Qu, Xiaochao and Chen, Yunpeng and Liu, Si},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13096--13105},
  year={2022}
}