Code for "Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation".
Follow the instructions in MMDetection3D:
Step 0. Install MMCV using MIM.
pip install openmim
mim install mmcv-full==1.3.10
Step 1. Install MMDetection.
pip install mmdet==2.14.0
Step 2. Install MMSegmentation.
pip install mmsegmentation
Step 3. Clone the DAS repository.
git clone https://github.com/wangzt-halo/das.git
cd das
Step 4. Install build requirements and then install DAS.
pip install -v -e . # or "python setup.py develop"
Download CMU Panoptic from Joo et al..
Process raw data.
python mytools/panoptic2coco.py --root /path/to/panoptic
Download MuCo-3DHP and MuPoTS-3D from Moon et al..
Process raw data.
python mytools/muco2coco.py --root /path/to/muco
Download COCO from COCO Dataset.
${ROOT}
|-- data
| |-- panoptic
| | |-- 160226_haggling1
| | | |-- hdImgs
| | | | |-- 00_16
| | | | |-- 00_30
| | |-- 160422_haggling1
| | |-- 160226_mafia1
| | |-- 160422_mafia2
| | |-- 160226_ultimatum1
| | |-- 160422_ultimatum1
| | |-- 160906_pizza1
| | |-- annotations
| | | |-- train.json
| | | |-- haggling.json
| | | |-- mafia.json
| | | |-- ultimatum.json
| | | |-- pizza.json
| |-- coco
| | |-- train2017
| | |-- annotations
| | | |-- person_keypoints_train2017.json
| |-- muco
| | |-- unaugmented_set
| | |-- augmented_set
| | |-- annotations
| | | |-- train_all_interv1.json
| |-- mupots
| | |-- TS1
| | | |-- img_000000.jpg
| | | |-- ...
| | |-- ...
| | |-- TS20
| | |-- annotations
| | | |-- MuPoTS-3D.json
Download the pretrained MSPN models from MMPose.
Put the models in ${ROOT}/weights/
We provide the checkpoint on CMU Panoptic dataset. [Checkpoint]
Train on CMU Panoptic dataset:
bash tools/dist_train.py configs/das/exp_panoptic.py 4
Evaluate on CMU Panoptic dataset:
bash tools/dist_test.py configs/das/exp_panoptic.py work_dirs/exp_panoptic/latest.pth 4 --eval mpjpe
Train on MUCO-3DHP dataset:
bash tools/dist_train.py configs/das/exp_mupots.py 4
Evaluate on MuPoTS-3D dataset:
bash tools/dist_test.py configs/das/exp_mupots.py work_dirs/exp_mupots/latest.pth 4 --eval pck
This project is not possible without multiple great open-sourced code bases. We list some notable examples below.
If this work is helpful for your research, please consider citing the following BibTeX entry.
@inproceedings{wang2022distribution,
title={Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation},
author={Wang, Zitian and Nie, Xuecheng and Qu, Xiaochao and Chen, Yunpeng and Liu, Si},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13096--13105},
year={2022}
}