This is the repository for the paper "DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy".
- python 3.6
- pytorch 1.10
- pydicom
- albumentations
- tensorboardX
- SimpleITK
Download OpenKBP challenge repository, and copy the data folder "provided-data" into this repository. You can run data preprocess step with the following command:
cd DoseDiff-main
# Convert csv data into nii format
python csv2nii.py
# Generate distance map and missing ROI
python PSDM_OpenKBP.py
# Convert 3D into 2D for training
python NII_to_npy.py
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=9999 train.py --gpu 0,1 --bs 16 --T 1000 --epoch 1600
CUDA_VISIBLE_DEVICES=0 python pred.py --gpu 0 --bs 64 --model_path trained_models/T1000_bs32_epoch1600/model_best_mae.pth --TTA 1 --T 1000 --ddim 8
if you find this repository useful in your research, please consider citing:
@ARTICLE{10486983,
author={Zhang, Yiwen and Li, Chuanpu and Zhong, Liming and Chen, Zeli and Yang, Wei and Wang, Xuetao},
journal={IEEE Transactions on Medical Imaging},
title={DoseDiff: Distance-Aware Diffusion Model for Dose Prediction in Radiotherapy},
year={2024},
volume={43},
number={10},
pages={3621-3633},
keywords={Computed tomography;Predictive models;Planning;Biomedical imaging;Training;Radiation therapy;Noise reduction;Deep learning;diffusion model;dose prediction;radiotherapy;signed distance map},
doi={10.1109/TMI.2024.3383423}}