Skip to content

Commit

Permalink
Merge branch 'main' into feature/transit_stops_osm
Browse files Browse the repository at this point in the history
  • Loading branch information
weiqi-tori authored Sep 6, 2024
2 parents 8c0768c + a74f98c commit 2864578
Show file tree
Hide file tree
Showing 7 changed files with 18 additions and 37 deletions.
2 changes: 1 addition & 1 deletion .github/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,6 @@ s3fs==2024.5.0
geemap==0.32.0
pip==23.3.1
boto3==1.34.124
scikit-learn==1.5.0
scikit-learn==1.5.1
overturemaps==0.6.0
exactextract==0.2.0.dev252
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ There are 2 ways to install dependencies. Choose one...

### Conda

`conda env create -f environment.yml`
`conda env create -f environment.yml` or `conda env update -f environment.yml`

### Setuptools

Expand Down
13 changes: 7 additions & 6 deletions city_metrix/layers/smart_surface_lulc.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@

from .layer import Layer, get_utm_zone_epsg, create_fishnet_grid, MAX_TILE_SIZE
from .open_street_map import OpenStreetMap, OpenStreetMapClass
from .overture_buildings import OvertureBuildings
from ..models.building_classifier.building_classifier import BuildingClassifier


Expand All @@ -33,12 +34,12 @@ def get_data(self, bbox):

# Open space
open_space_osm = OpenStreetMap(osm_class=OpenStreetMapClass.OPEN_SPACE_HEAT).get_data(bbox).to_crs(crs).reset_index()
open_space_osm['Value'] = np.int8(10)
open_space_osm['Value'] = 10


# Water
water_osm = OpenStreetMap(osm_class=OpenStreetMapClass.WATER).get_data(bbox).to_crs(crs).reset_index()
water_osm['Value'] = np.int8(20)
water_osm['Value'] = 20


# Roads
Expand All @@ -59,7 +60,7 @@ def get_data(self, bbox):
roads_osm['lanes'] = roads_osm['lanes'].fillna(roads_osm['avg_lanes'])

# Add value field (30)
roads_osm['Value'] = np.int8(30)
roads_osm['Value'] = 30

# Buffer roads by lanes * 10 ft (3.048 m)
# https://nacto.org/publication/urban-street-design-guide/street-design-elements/lane-width/#:~:text=wider%20lane%20widths.-,Lane%20widths%20of%2010%20feet%20are%20appropriate%20in%20urban%20areas,be%20used%20in%20each%20direction
Expand All @@ -73,14 +74,14 @@ def get_data(self, bbox):
)
else:
# Add value field (30)
roads_osm['Value'] = np.int8(30)
roads_osm['Value'] = 30


# Building
ulu_lulc_1m = BuildingClassifier().get_data_ulu(bbox, crs, esa_1m)
anbh_1m = BuildingClassifier().get_data_anbh(bbox, esa_1m)
# get building features
buildings = BuildingClassifier().get_data_buildings(bbox, crs)
buildings = OvertureBuildings().get_data(bbox).to_crs(crs)
# extract ULU, ANBH, and Area_m
buildings['ULU'] = exact_extract(ulu_lulc_1m, buildings, ["majority"], output='pandas')['majority']
buildings['ANBH'] = exact_extract(anbh_1m, buildings, ["mean"], output='pandas')['mean']
Expand Down Expand Up @@ -112,7 +113,7 @@ def get_data(self, bbox):

# Parking
parking_osm = OpenStreetMap(osm_class=OpenStreetMapClass.PARKING).get_data(bbox).to_crs(crs).reset_index()
parking_osm['Value'] = np.int8(50)
parking_osm['Value'] = 50


# combine features: open space, water, road, building, parking
Expand Down
Binary file modified city_metrix/models/building_classifier/building_classifier.pkl
Binary file not shown.
34 changes: 7 additions & 27 deletions city_metrix/models/building_classifier/building_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,6 @@
from ...layers.esa_world_cover import EsaWorldCover, EsaWorldCoverClass
from ...layers.urban_land_use import UrbanLandUse
from ...layers.average_net_building_height import AverageNetBuildingHeight
from ...layers.open_street_map import OpenStreetMap, OpenStreetMapClass
from ...layers.open_buildings import OpenBuildings


class BuildingClassifier(Layer):
Expand Down Expand Up @@ -52,8 +50,8 @@ def get_data_esa_reclass(self, bbox, crs):
# Perform the reclassification
reclassified_esa = reclassify(esa_world_cover, bins=list(reclass_map.keys()), new_values=list(reclass_map.values()))

# Convert to int8 and chunk the data for Dask processing
reclassified_esa = reclassified_esa.astype(np.int8).chunk({'x': 512, 'y': 512})
# Chunk the data for Dask processing
reclassified_esa = reclassified_esa.chunk({'x': 512, 'y': 512})

reclassified_esa = reclassified_esa.rio.write_crs(esa_world_cover.rio.crs, inplace=True)

Expand Down Expand Up @@ -81,8 +79,8 @@ def get_data_ulu(self, bbox, crs, snap_to):
for from_val, to_val in mapping.items():
ulu_lulc = ulu_lulc.where(ulu_lulc != from_val, to_val)

# Convert to int8 and chunk the data for Dask processing
ulu_lulc = ulu_lulc.astype(np.int8).chunk({'x': 512, 'y': 512})
# Chunk the data for Dask processing
ulu_lulc = ulu_lulc.chunk({'x': 512, 'y': 512})

####### 1-Non-residential as default
# 0-Unclassified as nodata
Expand Down Expand Up @@ -111,28 +109,10 @@ def get_data_anbh(self, bbox, snap_to):

return anbh_1m

def get_data_buildings(self, bbox, crs):
# OSM buildings
building_osm = OpenStreetMap(osm_class=OpenStreetMapClass.BUILDING).get_data(bbox).to_crs(crs).reset_index(drop=True)
# Google-Microsoft Open Buildings Dataset buildings
openbuilds = OpenBuildings(country='USA').get_data(bbox).to_crs(crs).reset_index(drop=True)

# Intersect buildings and keep the open buildings that don't intersect OSM buildings
intersect_buildings = gpd.sjoin(building_osm, openbuilds, how='inner', predicate='intersects')
openbuilds_non_intersect = openbuilds.loc[~openbuilds.index.isin(intersect_buildings.index)]

buildings = pd.concat([building_osm['geometry'], openbuilds_non_intersect['geometry']], ignore_index=True).reset_index()
# Get rid of any 3d geometries that cause a problem
buildings = buildings[~buildings['geometry'].apply(lambda geom: 'Z' in geom.geom_type)]

# Value not start with 0
buildings['Value'] = buildings['index'] + 1

return buildings

def rasterize_polygon(self, gdf, snap_to):
if gdf.empty:
raster = np.full(snap_to.shape, 0, dtype=np.int8)
raster = np.full(snap_to.shape, 0)
raster = xr.DataArray(raster, dims=snap_to.dims, coords=snap_to.coords)

return raster.rio.write_crs(snap_to.rio.crs, inplace=True)
Expand All @@ -141,7 +121,7 @@ def rasterize_polygon(self, gdf, snap_to):
vector_data=gdf,
measurements=["Value"],
like=snap_to,
fill=np.int8(0)
fill=0
).Value

return raster.rio.reproject_match(snap_to)
Expand Down Expand Up @@ -169,7 +149,7 @@ def building_classifier_tree(self):
# set classifier parameters
clf = DecisionTreeClassifier(max_depth=5)
# encode labels
buildings_sample['Slope_encoded'] = buildings_sample['Slope'].map({'low': np.int8(42), 'high': np.int8(40)})
buildings_sample['Slope_encoded'] = buildings_sample['Slope'].map({'low': 42, 'high': 40})

# Select these rows for the training set
build_train = buildings_sample[buildings_sample['Model']=='training']
Expand Down
2 changes: 1 addition & 1 deletion environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ dependencies:
- geemap=0.32.0
- pip=23.3.1
- boto3=1.34.124
- scikit-learn=1.5.0
- scikit-learn=1.5.1
- exactextract=0.2.0.dev252
- pip:
- overturemaps==0.6.0
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,6 @@
"boto3",
"exactextract<=0.2.0.dev252",
"overturemaps",
"scikit-learn>=1.5.0",
"scikit-learn>=1.5.1",
],
)

0 comments on commit 2864578

Please sign in to comment.