Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cif 247 increase unit test coverage for cif #75

Merged
merged 15 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions city_metrix/layers/impervious_surface.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,14 @@


class ImperviousSurface(Layer):
def __init__(self, **kwargs):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

def __init__(self, spatial_resolution=100, **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
# load impervious_surface
Expand All @@ -19,5 +25,5 @@ def get_data(self, bbox):
.sum()
)

data = get_image_collection(imperv_surf, bbox, 100, "imperv surf")
data = get_image_collection(imperv_surf, bbox, self.spatial_resolution, "imperv surf")
return data.change_year_index
2 changes: 1 addition & 1 deletion city_metrix/layers/ndvi_sentinel2_gee.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ class NdviSentinel2(Layer):
Notebook: https://github.com/wri/cities-cities4forests-indicators/blob/dev-eric/scripts/extract-VegetationCover.ipynb
Reference: https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
"""
def __init__(self, year=None, spatial_resolution=10, **kwargs):
def __init__(self, year=2021, spatial_resolution=10, **kwargs):
super().__init__(**kwargs)
self.year = year
self.spatial_resolution = spatial_resolution
Expand Down
15 changes: 8 additions & 7 deletions tests/resources/layer_dumps_for_br_lauro_de_freitas/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,15 +26,16 @@
def pytest_configure(config):
qgis_project_file = 'layers_for_br_lauro_de_freitas.qgz'

source_folder = os.path.dirname(__file__)
target_folder = get_target_folder_path()
create_target_folder(target_folder, True)
if RUN_DUMPS is True:
source_folder = os.path.dirname(__file__)
target_folder = get_target_folder_path()
create_target_folder(target_folder, True)

source_qgis_file = os.path.join(source_folder, qgis_project_file)
target_qgis_file = os.path.join(target_folder, qgis_project_file)
shutil.copyfile(source_qgis_file, target_qgis_file)
source_qgis_file = os.path.join(source_folder, qgis_project_file)
target_qgis_file = os.path.join(target_folder, qgis_project_file)
shutil.copyfile(source_qgis_file, target_qgis_file)

print("\n\033[93m QGIS project file and layer files written to folder %s.\033[0m\n" % target_folder)
print("\n\033[93m QGIS project file and layer files written to folder %s.\033[0m\n" % target_folder)

@pytest.fixture
def target_folder():
Expand Down
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
TreeCanopyHeight,
TreeCover,
UrbanLandUse,
WorldPop, Layer
WorldPop, Layer, ImperviousSurface
)
from .conftest import RUN_DUMPS, prep_output_path, verify_file_is_populated
from ...tools.general_tools import get_class_default_spatial_resolution
Expand Down Expand Up @@ -62,6 +62,13 @@ def test_write_high_land_surface_temperature(target_folder, bbox_info, target_sp
HighLandSurfaceTemperature(spatial_resolution=target_resolution).write(bbox_info.bounds, file_path, tile_degrees=None)
assert verify_file_is_populated(file_path)

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
def test_write_impervious_surface(target_folder, bbox_info, target_spatial_resolution_multiplier):
file_path = prep_output_path(target_folder, 'impervious_surface.tif')
target_resolution = target_spatial_resolution_multiplier * get_class_default_spatial_resolution(ImperviousSurface())
LandSurfaceTemperature(spatial_resolution=target_resolution).write(bbox_info.bounds, file_path, tile_degrees=None)
assert verify_file_is_populated(file_path)

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
def test_write_land_surface_temperature(target_folder, bbox_info, target_spatial_resolution_multiplier):
file_path = prep_output_path(target_folder, 'land_surface_temperature.tif')
Expand Down Expand Up @@ -100,7 +107,7 @@ def test_write_ndvi_sentinel2_gee(target_folder, bbox_info, target_spatial_resol

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
def test_write_openbuildings(target_folder, bbox_info, target_spatial_resolution_multiplier):
file_path = prep_output_path(target_folder, 'open_buildings.tif')
file_path = prep_output_path(target_folder, 'open_buildings.geojson')
OpenBuildings(bbox_info.country).write(bbox_info.bounds, file_path, tile_degrees=None)
assert verify_file_is_populated(file_path)

Expand All @@ -113,7 +120,7 @@ def test_write_openbuildings(target_folder, bbox_info, target_spatial_resolution

@pytest.mark.skipif(RUN_DUMPS == False, reason='Skipping since RUN_DUMPS set to False')
def test_write_overture_buildings(target_folder, bbox_info, target_spatial_resolution_multiplier):
file_path = prep_output_path(target_folder, 'overture_buildings.tif')
file_path = prep_output_path(target_folder, 'overture_buildings.geojson')
OvertureBuildings().write(bbox_info.bounds, file_path, tile_degrees=None)
assert verify_file_is_populated(file_path)

Expand Down
117 changes: 113 additions & 4 deletions tests/test_layer_dimensions.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,128 @@
from city_metrix.layers import NdviSentinel2
import ee
import pytest

from city_metrix.layers import NdviSentinel2, TreeCover, Albedo, AlosDSM
from tests.resources.bbox_constants import BBOX_BRA_LAURO_DE_FREITAS_1
from city_metrix.layers.layer import get_image_collection
from tests.tools.general_tools import post_process_layer

EE_IMAGE_DIMENSION_TOLERANCE = 1 # Tolerance compensates for variable results from GEE service
COUNTRY_CODE_FOR_BBOX = 'BRA'
BBOX = BBOX_BRA_LAURO_DE_FREITAS_1

def test_read_image_collection():
ic = ee.ImageCollection("ESA/WorldCover/v100")
data = get_image_collection(ic, BBOX, 10, "test")

expected_crs = 32724
expected_x_dimension = 187
expected_y_dimension = 199

assert data.rio.crs == expected_crs
assert (
pytest.approx(expected_x_dimension, rel=EE_IMAGE_DIMENSION_TOLERANCE) == "x",
pytest.approx(expected_y_dimension, rel=EE_IMAGE_DIMENSION_TOLERANCE) == "y"
)

def test_read_image_collection_scale():
ic = ee.ImageCollection("ESA/WorldCover/v100")
data = get_image_collection(ic, BBOX, 100, "test")
expected_x_dimension = 19
expected_y_dimension = 20
assert data.dims == {"x": expected_x_dimension, "y": expected_y_dimension}

def test_albedo_dimensions():
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is "dimensions" abstract here or mean x/y dimensions? It feels like you're mostly test x/y dimensions, but then actually test stats about the values in these two functions.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"Dimensions" was abstract and I've renamed. I also renamed the overall file to "test_layer_metrics" and added a description near top of file.

data = Albedo().get_data(BBOX)
analysis_data = post_process_layer(data, value_threshold=0.1, convert_to_percentage=True)

expected_min = 0
jterry64 marked this conversation as resolved.
Show resolved Hide resolved
expected_max = 34
expected_peak_value = 15
# peak_value, peak_count = get_count_by_value(analysis_data, expected_min, expected_max)

# Bounding values
actual_min = analysis_data.values.min()
actual_max = analysis_data.values.max()

# Peak frequency
full_count = analysis_data.size
mid_count_pct = get_value_percent(analysis_data, expected_peak_value, full_count, 0)

# Value range
assert actual_min == expected_min
assert actual_max == expected_max
# Peak frequency
assert mid_count_pct == 21

def test_alos_dsm_dimensions():
analysis_data = AlosDSM().get_data(BBOX)

expected_min = 16
expected_max = 86
expected_peak_value = 56
peak_value, peak_count = get_count_by_value(analysis_data, expected_min, expected_max)

# Bounding values
actual_min = analysis_data.values.min()
actual_max = analysis_data.values.max()

# Peak frequency
full_count = analysis_data.size
mid_count_pct = get_value_percent(analysis_data, expected_peak_value, full_count, 0)

# Value range
assert actual_min == expected_min
assert actual_max == expected_max
# Peak frequency
assert mid_count_pct == 3

def test_ndvi_dimensions():
data = NdviSentinel2(year=2023).get_data(BBOX)
data_for_map = post_process_layer(data, value_threshold=0.4, convert_to_percentage=True)
analysis_data = post_process_layer(data, value_threshold=0.4, convert_to_percentage=True)

expected_min = 0
actual_min = data_for_map.values.min()
expected_max = 85
actual_max = data_for_map.values.max()
expected_peak_value = 78
# peak_value, peak_count = get_count_by_value(analysis_data, expected_min, expected_max)

# Bounding values
actual_min = analysis_data.values.min()
actual_max = analysis_data.values.max()

# Peak frequency
full_count = analysis_data.size
mid_count_pct = get_value_percent(analysis_data, expected_peak_value, full_count, 0)

# Value range
assert actual_min == expected_min
assert actual_max == expected_max
# Peak frequency
assert mid_count_pct == 11


def test_tree_cover():
actual = TreeCover().get_data(BBOX).mean()
expected = 54.0
tolerance = 0.1
assert (
pytest.approx(expected, rel=tolerance) == actual
)

def get_value_percent(data, value, full_count, precision):
jterry64 marked this conversation as resolved.
Show resolved Hide resolved
count_for_value = data.values[data.values == value].size
percent_of_cells_with_value = get_rounded_pct(full_count, count_for_value, precision)
return percent_of_cells_with_value

def get_rounded_pct(full_count, this_count, precision):
return round((this_count/full_count)*100, precision)

def get_count_by_value(data, min_value, max_value):
peak_value = None
peak_count = 0
for x in range(min_value, max_value):
count = data.values[data.values == x].size
if count > peak_count:
peak_count = count
peak_value = x

return peak_value, peak_count
Loading