Skip to content

Commit

Permalink
Merge pull request #306 from raybellwaves/rm-weights-load
Browse files Browse the repository at this point in the history
  • Loading branch information
raybellwaves authored May 7, 2021
2 parents e0f8531 + e2e3e7f commit 67b47b9
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 7 deletions.
14 changes: 9 additions & 5 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,19 +5,23 @@ Changelog History
xskillscore v0.0.20 (2021-XX-XX)
--------------------------------

Features
~~~~~~~~
- Specify category distribution type with ``input_distributions`` in
:py:func:`~xskillscore.rps` if ``category_edges==None`` that forecasts and
observations are probability distributions ``p`` or cumulative
distributionss ``c``. See :py:func:`~xskillscore.rps` docstrings and doctests for
examples. (:pr:`300`) `Aaron Spring`_

Internal Changes
~~~~~~~~~~~~~~~~
- Use ``pytest-xdist`` and ``matplotlib-base`` in environments to speed up CI.
(:pr:`283`) `Aaron Spring`_
- :py:func:`~xskillscore.rps` does not break from masking NaNs anymore.
:py:func:`~xskillscore.rps` expilicty checks for ``bin_dim`` if
``category_edges==None``. (:pr:`287`) `Aaron Spring`_
- Specify category distribution type with ``input_distributions`` in
:py:func:`~xskillscore.rps` if ``category_edges==None`` that forecasts and
observations are probability distributions ``p`` or cumulative
distributionss ``c``. See :py:func:`~xskillscore.rps` docstrings and doctests for
examples. (:pr:`300`) `Aaron Spring`_
- Add doctest on the docstring examples. (:pr:`302`) `Ray Bell`_
- Removed a call to compute weights in testing (:pr:`306`) `Ray Bell`_


xskillscore v0.0.19 (2021-03-12)
Expand Down
2 changes: 0 additions & 2 deletions xskillscore/tests/test_deterministic.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,8 +256,6 @@ def test_distance_metrics_daskda_same_npda(
actual = metric(a, b, dim, skipna=skipna)
else:
actual = metric(a, b, dim, weights=_weights, skipna=skipna)
if _weights is not None:
_weights = _weights.load()
if metric is median_absolute_error:
expected = metric(a.load(), b.load(), dim, skipna=skipna)
else:
Expand Down

0 comments on commit 67b47b9

Please sign in to comment.