The repo for the pre-print work "PAC Bayesian Performance Guarantees for Deep(Stochastic) Networks in Medical Imaging." Available at: https://arxiv.org/abs/2104.05600
- Python 3.6
- Pytorch 1.4
- numpy
- tqdm
- pandas
- PIL
- Run
get_data.sh
to retrieve the ISIC2018 challenge data. - Run
make_split.py
to generate a train test split. - Run
python3 -m src.main **kwargs
to train models and compute bounds.
To reproduce the results showed in the fig a, b, c, and d, please run the following scripts.
sh scripts/fig_a/LW.sh
sh scripts/fig_a/LW-PBB.sh
sh scripts/fig_a/U-Net.sh
sh scripts/fig_a/U-Net-PBB.sh
sh scripts/fig_b/sigma_prior_0.001.sh
sh scripts/fig_b/sigma_prior_0.005.sh
sh scripts/fig_b/sigma_prior_0.01.sh
sh scripts/fig_b/sigma_prior_0.02.sh
sh scripts/fig_b/sigma_prior_0.03.sh
sh scripts/fig_b/sigma_prior_0.04.sh
sh scripts/fig_b/sigma_prior_0.05.sh
sh scripts/fig_c/sigma_prior_0.001.sh
sh scripts/fig_c/sigma_prior_0.005.sh
sh scripts/fig_c/sigma_prior_0.01.sh
sh scripts/fig_c/sigma_prior_0.02.sh
sh scripts/fig_c/sigma_prior_0.03.sh
sh scripts/fig_c/sigma_prior_0.04.sh
sh scripts/fig_c/sigma_prior_0.05.sh
sh scripts/fig_c/sigma_prior_0.1.sh
sh scripts/fig_c/sigma_prior_0.2.sh
sh scripts/fig_d/LW.sh
sh scripts/fig_d/U-Net.sh