-
Notifications
You must be signed in to change notification settings - Fork 12
Home
Yews is an open-source project dedicated to providing a deep learning framework for processing seismological data. It contains abstract classes for deep learning tasks as well as automation tools for preparing seismic dataset.
- Add
yews.datasets.mariana
module - Training used the same setup as
examples/wenchuan.py
-
yews.transforms
is covered 100% -
yews.datasets
is covered 100%
- Refactorize
yews.datasets
- Add
memmap
support to.npy
datasets
- Documentation is now available on the custom domain at https://www.yews.info
-
yews.transforms
module is under unit test
- A logo added on the top of README.md
- Travis-CI and Codecov have been set up for Linux platform
- AppVeyor have been set up for Windows platform
We held our first internal workshop to introduce the Yews package and open for the internal alpha test.
- Processing seismic waveform data by deep learning
- Peripheral tools to facilitate research in seismic processing
- Release an alpha test version (0.0.1) in April 2019
- Additional alpha test version (0.0.2 - 0.0.3)
- Release beta test version (tentatively v0.0.5) in August 2019
- Release the first stable version (v0.1.0) in December 2019
- Refactorization of
yews.dataset
and add unittest - Refactorization of
yews.train
(tentatively renamed toyews.utils
) and add unittest - Get a list of feature request from EAS scholars
Please support the project by acknowledging the use of it. The citations help us keep it alive. If you use Yews for work resulting in an academic publication, we would be grateful if you cite one of the following papers:
-
Zhu, L., Peng, Z., McClellan, J., Li, C., Yao, D., Li, Z., & Fang, L. (2019).
Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7. 9 Wenchuan.
arXiv preprint
arXiv:1901.06396. -
Zhu, L., Peng, Z., & McClellan, J. (2018, October).
Deep learning for seismic event detection of earthquake aftershocks.
In 2018 52nd Asilomar Conference on Signals, Systems, and Computers (pp. 1121-1125). IEEE.
DOI: 10.1109/ACSSC.2018.8645360 -
Zhu, L., Peng, Z., & McClellan, J. (2018, June).
Event Detection and Phase Picking Based on Deep Convolutional Neural Networks.
In 80th EAGE Conference and Exhibition 2018.
DOI: 10.3997/2214-4609.201801052 -
Zhu, L., Li, Z., Li, C., Wang, B., Chen, Z., McClellan, J. H., & Peng, Z. (2017, December).
Machine-Learning Inspired Seismic Phase Detection for Aftershocks of the 2008 MW7. 9 Wenchuan Earthquake.
In AGU Fall Meeting Abstracts, 2017.