Skip to content

Deformable Convolutional Networks v2 with Pytorch

Notifications You must be signed in to change notification settings

zhangliutong/DCNv2

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deformable Convolutional Networks V2 with Pytorch 1.0

Build

    ./make.sh         # build
    python test.py    # run examples and gradient check 

An Example

  • deformable conv
    from dcn_v2 import DCN
    input = torch.randn(2, 64, 128, 128).cuda()
    # wrap all things (offset and mask) in DCN
    dcn = DCN(64, 64, kernel_size=(3,3), stride=1, padding=1, deformable_groups=2).cuda()
    output = dcn(input)
    print(output.shape)
  • deformable roi pooling
    from dcn_v2 import DCNPooling
    input = torch.randn(2, 32, 64, 64).cuda()
    batch_inds = torch.randint(2, (20, 1)).cuda().float()
    x = torch.randint(256, (20, 1)).cuda().float()
    y = torch.randint(256, (20, 1)).cuda().float()
    w = torch.randint(64, (20, 1)).cuda().float()
    h = torch.randint(64, (20, 1)).cuda().float()
    rois = torch.cat((batch_inds, x, y, x + w, y + h), dim=1)

    # mdformable pooling (V2)
    # wrap all things (offset and mask) in DCNPooling
    dpooling = DCNPooling(spatial_scale=1.0 / 4,
                         pooled_size=7,
                         output_dim=32,
                         no_trans=False,
                         group_size=1,
                         trans_std=0.1).cuda()

    dout = dpooling(input, rois)

Note

Now the master branch is for pytorch 1.0 (new ATen API), you can switch back to pytorch 0.4 with,

git checkout pytorch_0.4

Known Issues:

  • Gradient check w.r.t offset (solved)
  • Backward is not reentrant (minor)

This is an adaption of the official Deformable-ConvNets.

I have ran the gradient check for many times with DOUBLE type. Every tensor except offset passes. However, when I set the offset to 0.5, it passes. I'm still wondering what cause this problem. Is it because some non-differential points?

Update: all gradient check passes with double precision.

Another issue is that it raises RuntimeError: Backward is not reentrant. However, the error is very small (<1e-7 for float <1e-15 for double), so it may not be a serious problem (?)

Please post an issue or PR if you have any comments.

About

Deformable Convolutional Networks v2 with Pytorch

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Cuda 52.9%
  • Python 25.3%
  • C++ 15.8%
  • C 5.9%
  • Shell 0.1%