Skip to content

Production-grade 3D gaussian splatting with CPU/GPU support for Windows, Mac and Linux πŸš€

License

Notifications You must be signed in to change notification settings

zhiguotang5/OpenSplat

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ’¦ OpenSplat

A free and open source implementation of 3D gaussian splatting written in C++, focused on being portable, lean and fast.

OpenSplat takes camera poses + sparse points in COLMAP, OpenSfM, ODM or nerfstudio project format and computes a scene file (.ply or .splat) that can be later imported for viewing, editing and rendering in other software.

Graphics card recommended, but not required! OpenSplat runs the fastest on NVIDIA, AMD and Apple (Metal) GPUs, but can also run entirely on the CPU (~100x slower).

Commercial use allowed and encouraged under the terms of the AGPLv3. βœ…

We even have a song 🎡

Getting Started

If you're on Windows, you can buy the pre-built program. This saves you time and helps support the project ❀️. Then jump directly to the run section. As an alternative, check the build section below.

If you're on macOS or Linux check the build section below.

Build

You can build OpenSplat with or without GPU support.

Requirements for all builds:

  • OpenCV: sudo apt install libopencv-dev should do it.
  • libtorch: See instructions below.

CPU

For libtorch visit https://pytorch.org/get-started/locally/ and select your OS, for package select "LibTorch". For compute platform you can select "CPU".

Then:

git clone https://github.com/pierotofy/OpenSplat OpenSplat
cd OpenSplat
mkdir build && cd build
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch/ .. && make -j$(nproc)

CUDA

Additional requirement:

For libtorch visit https://pytorch.org/get-started/locally/ and select your OS, for package select "LibTorch". Make sure to match your version of CUDA if you want to leverage GPU support in libtorch.

Then:

git clone https://github.com/pierotofy/OpenSplat OpenSplat
cd OpenSplat
mkdir build && cd build
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch/ .. && make -j$(nproc)

ROCm via HIP

Additional requirement:

For libtorch visit https://pytorch.org/get-started/locally/ and select your OS, for package select "LibTorch". Make sure to match your version of ROCm (5.7) if you want to leverage AMD GPU support in libtorch.

Then:

git clone https://github.com/pierotofy/OpenSplat OpenSplat
cd OpenSplat
mkdir build && cd build
export PYTORCH_ROCM_ARCH=gfx906
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch/ -DGPU_RUNTIME="HIP" -DHIP_ROOT_DIR=/opt/rocm -DOPENSPLAT_BUILD_SIMPLE_TRAINER=ON ..
make

In addition, you can leverage Jinja to build the project

cmake -GNinja -DCMAKE_PREFIX_PATH=/path/to/libtorch/ -DGPU_RUNTIME="HIP" -DHIP_ROOT_DIR=/opt/rocm -DOPENSPLAT_BUILD_SIMPLE_TRAINER=ON ..
jinja

Windows

There's several ways to build on Windows, but this particular configuration has been confirmed to work:

Then run:

"C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Auxiliary/Build/vcvars64.bat"
git clone https://github.com/pierotofy/OpenSplat OpenSplat
cd OpenSplat
md build
cd build
cmake -DCMAKE_PREFIX_PATH=C:/path_to/libtorch_2.1.2_cu11.8/libtorch -DOPENCV_DIR=C:/path_to/OpenCV_4.9.0/build -DCMAKE_BUILD_TYPE=Release ..
cmake --build . --config Release

Optional: Edit cuda target (only if required) before cmake --build .

C:/path_to/OpenSplat/build/gsplat.vcxproj for example: arch=compute_75,code=sm_75

macOS

If you're using Homebrew, you can install Cmake/OpenCV/Pytorch by running:

brew install cmake
brew install opencv
brew install pytorch

You will also need to install Xcode and the Xcode command line tools to compile with metal support (otherwise, OpenSplat will build with CPU acceleration only):

  1. Install Xcode from the Apple App Store.
  2. Install the command line tools with xcode-select --install. This might do nothing on your machine.
  3. If xcode-select --print-path prints /Library/Developer/CommandLineTools,then run sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer.

Then run:

git clone https://github.com/pierotofy/OpenSplat OpenSplat
cd OpenSplat
mkdir build && cd build
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch/ -DGPU_RUNTIME=MPS .. && make -j$(sysctl -n hw.logicalcpu)
./opensplat

If building CPU-only, remove -DGPU_RUNTIME=MPS.

⚠️ You will probably get a libc10.dylib can’t be opened because Apple cannot check it for malicious software error on first run. Open System Settings and go to Privacy & Security and find the Allow button. You might need to repeat this several times until all torch libraries are loaded.

Docker Build

CUDA

Navigate to the root directory of OpenSplat repo that has Dockerfile and run the following command to build the Docker image:

docker build -t opensplat .

The -t flag and other --build-arg let you tag and further customize your image across different ubuntu versions, CUDA/libtorch stacks, and hardware accelerators. For example, to build an image with Ubuntu 22.04, CUDA 12.1.1, libtorch 2.2.1, and support for CUDA architectures 7.0 and 7.5, run the following command:

docker build \
  -t opensplat:ubuntu-22.04-cuda-12.1.1-torch-2.2.1 \
  --build-arg UBUNTU_VERSION=22.04 \
  --build-arg CUDA_VERSION=12.1.1 \
  --build-arg TORCH_VERSION=2.2.1 \
  --build-arg CMAKE_CUDA_ARCHITECTURES="70;75;80" \
  --build-arg CMAKE_BUILD_TYPE=Release .

ROCm via HIP

Navigate to the root directory of OpenSplat repo that has Dockerfile and run the following command to build the Docker image:

docker build \
  -t opensplat \
  -f Dockerfile.rocm .

The -t flag and other --build-arg let you tag and further customize your image across different ubuntu versions, CUDA/libtorch stacks, and hardware accelerators. For example, to build an image with Ubuntu 22.04, CUDA 12.1.1, libtorch 2.2.1, ROCm 5.7.1, and support for ROCm architectures gfx906, run the following command:

docker build \
  -t opensplat:ubuntu-22.04-cuda-12.1.1-libtorch-2.2.1-rocm-5.7.1-llvm-16 \
  --build-arg UBUNTU_VERSION=22.04 \
  --build-arg CUDA_VERSION=12.1.1 \
  --build-arg TORCH_VERSION=2.2.1 \
  --build-arg ROCM_VERSION=5.7.1 \
  --build-arg PYTORCH_ROCM_ARCH="gfx906" \
  --build-arg CMAKE_BUILD_TYPE=Release .

Note: If you want to use ROCm 6.x, you need to switch to AMD version of pytorch docker as a base layer to build:

docker build \
  -t opensplat:ubuntu-22.04-libtorch-2.1.2-rocm-6.0.2 \
  -f Dockerfile.rocm6 .

Run

To get started, download a dataset and extract it to a folder: [ banana ] [ train ] [ truck ]

Then run from a command line prompt:

Windows

cd c:\path\to\opensplat
opensplat.exe c:\path\to\banana -n 2000

macOS / Linux

cd build
./opensplat /path/to/banana -n 2000

The program will generate an output splat.ply file which can then be dragged and dropped in one of the many viewers such as https://playcanvas.com/viewer. You can also edit/cleanup the scene using https://playcanvas.com/supersplat/editor. The program will also output a cameras.json file in the same directory which can be used by some viewers.

To run on your own data, choose the path to an existing COLMAP, OpenSfM, ODM or nerfstudio project. The project must have sparse points included (random initialization is not supported, see pierotofy#7).

There's several parameters you can tune. To view the full list:

./opensplat --help

Compression

To generate compressed splats (.splat files), use the -o option:

./opensplat /path/to/banana -o banana.splat

AMD GPU Notes

To train a model with AMD GPU using docker container, you can use the following command as a reference:

  1. Launch the docker container with the following command:
docker run -it -v ~/data:/data --device=/dev/kfd --device=/dev/dri opensplat:ubuntu-22.04-libtorch-2.1.2-rocm-6.0.2 bash
  1. Inside the docker container, run the following command to train the model:
export HIP_VISIBLE_DEVICES=0
export HSA_OVERRIDE_GFX_VERSION=10.3.0  # AMD RX 6700 XT workaround 
cd /code/build
./opensplat /data/banana -n 2000

Project Goals

We recently released OpenSplat, so there's lots of work to do.

  • Support for running on AMD cards (more testing needed)
  • Improve speed / reduce memory usage
  • Distributed computation using multiple machines
  • Real-time training viewer output
  • Automatic filtering
  • Your ideas?

https://github.com/pierotofy/OpenSplat/issues?q=is%3Aopen+is%3Aissue+label%3Aenhancement

Contributing

We welcome contributions! Pull requests are welcome.

GPU Memory Notes

A single gaussian takes ~2000 bytes of memory, so currenly you need ~2GB of GPU memory for each million gaussians.

Credits

The methods used in OpenSplat are originally based on splatfacto.

License

The code in this repository, unless otherwise noted, is licensed under the AGPLv3.

The code from splatfacto is originally licensed under the Apache 2.0 license and is Β© 2023 The Nerfstudio Team.

About

Production-grade 3D gaussian splatting with CPU/GPU support for Windows, Mac and Linux πŸš€

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 47.2%
  • Cuda 24.3%
  • Metal 14.5%
  • Objective-C++ 9.4%
  • CMake 3.5%
  • Dockerfile 0.7%
  • C 0.4%