Skip to content

Commit

Permalink
Merge pull request #266 from mjsutcliffe99/master
Browse files Browse the repository at this point in the history
Add cat decompositions
  • Loading branch information
jvdwetering authored Aug 9, 2024
2 parents ec4bf47 + f129f47 commit 7342e3f
Showing 1 changed file with 96 additions and 0 deletions.
96 changes: 96 additions & 0 deletions pyzx/simulate.py
Original file line number Diff line number Diff line change
Expand Up @@ -574,3 +574,99 @@ def cut_wishbone(g,v,neighs,ph):
gRight.add_to_phase(v_right,1)

return (gLeft,gRight)

def gen_catlike_term(gInit: BaseGraph[VT,ET], verts: List[VT], ph_base, ph_central, ph_appendix, eType_base, eType_appendix, scal_positive, scal_power, scal_phase):
"""
Used for constructing graph terms with local structure of the form of the right-hand side terms of the cat (and magic5) decompositions seen in: https://arxiv.org/pdf/2202.09202.
For example, consider the magic5 decomposition in this above paper. Here, we exchange 5 T-spiders (verts) of our graph (gInit) for three catlike terms.
The third and final such term has:
Phase of pi/2 on each of the 5 outgoing edges, i.e. ph_base=Fraction(1,2);
Phase of 0 on the inner central spider to which the others are connected, i.e. ph_central=0;
Phase of pi/4 on the outstanding one-legged 'appendix' spider, i.e. ph_appendix=Fraction(1,4);
Hadamard edges connecting each of the outgoing spiders to the inner central spider, i.e. eType_base=EdgeType.HADAMARD;
Hadamard edge connecting the appendix spider to the central spider, i.e. eType_appendix=EdgeType.HADAMARD;
Negative sign on the scalar factor, i.e. scal_positive=False;
sqrt(2)^3 factor in its scalar, i.e. scal_power=3;
e^{i*pi/4} factor in its scalar, i.e. scal_phase=Fraction(1,4).
"""
g = gInit.clone()
g.scalar.add_power(scal_power)
if not scal_positive: g.scalar.add_power(1)
g.scalar.add_phase(scal_phase)

new_v1 = g.add_vertex(qubit=-1,row=-1,ty=VertexType.Z,phase=ph_central)
new_v2 = g.add_vertex(qubit=-2,row=-1,ty=VertexType.Z,phase=ph_appendix)
g.add_edge((new_v1,new_v2),eType_appendix)
for v in verts:
g.add_to_phase(v,ph_base-Fraction(1,4))
g.add_edge((v,new_v1),eType_base)

return g

def check_catn(g: BaseGraph[VT,ET], vert: VT, n):
"""Runs assertion checks to ensure the cat_n decomposition is applicable to vertex v of graph g. See: https://arxiv.org/pdf/2202.09202."""
assert n in [3,4,5,6], "Cat"+str(n)+" decomposition not implemented. Try cat3, cat4, cat5, or cat6 instead."
assert vert in g.vertices(), "Vertex "+str(vert)+" does not exist in graph"
assert g.phase(vert) == 0, "The cat"+str(n)+" decomposition acts on a phaseless spider but specified vertex has phase "+str(g.phase(vert)) # TODO: the cat decomps should be updated to work even if the central phase is pi (i.e. not just zero)
assert len(g.neighbors(vert)) == n, "The cat"+str(n)+" decomposition acts on a "+str(n)+"-degree spider but specified vertex has degree "+str(len(g.neighbors(vert)))
for v in g.neighbors(vert):
assert (g.edge_type(g.edge(vert,v)) == EdgeType.HADAMARD and g.type(v) == g.type(vert)) or \
(g.edge_type(g.edge(vert,v)) == EdgeType.SIMPLE and g.type(v) == toggle_vertex(g.type(vert))), \
"The cat"+str(n)+" decomposition must act on a spider with "+str(n)+" opposite colour neighbours (or like-coloured with Hadamard edges)"
return True

def apply_magic5(g: BaseGraph[VT,ET], verts: List[VT]) -> SumGraph:
"""Apply the magic5 decomposition to vertices verts of graph g. See: https://arxiv.org/pdf/2202.09202."""
assert len(verts) == 5, "The magic5 decomposition acts on 5 spiders but you specified "+str(len(verts))
for v in verts: assert v in g.vertices(), "Vertex "+str(v)+" does not exist in graph"

g_A = gen_catlike_term(g, verts, 0, Fraction(-1,2), Fraction(-1,4), EdgeType.SIMPLE, EdgeType.SIMPLE, True, 2, 0)
g_B = gen_catlike_term(g, verts, 0, 0, Fraction(-1,4), EdgeType.HADAMARD, EdgeType.HADAMARD, True, 3, Fraction(3,4))
g_C = gen_catlike_term(g, verts, Fraction(1,2), 0, Fraction(1,4), EdgeType.HADAMARD, EdgeType.HADAMARD, False, 3, Fraction(1,4))

return SumGraph([g_A, g_B, g_C])

# TODO: the cat decomps should be updated to work even if the central phase is pi (i.e. not just zero)
def apply_cat3(g: BaseGraph[VT,ET], vert: VT) -> SumGraph:
"""Apply the cat3 decomposition to vertex verts of graph g. See: https://arxiv.org/pdf/2202.09202."""
check_catn(g,vert,3)
verts = List(g.neighbors(vert))
g_A = gen_catlike_term(g, verts, 0, Fraction(-1,2), 0, EdgeType.SIMPLE, EdgeType.HADAMARD, True, -1, Fraction(-1,4))
g_B = gen_catlike_term(g, verts, 0, 0, 0, EdgeType.HADAMARD, EdgeType.SIMPLE, True, 0, Fraction(1,2))
g_A.remove_vertex(vert)
g_B.remove_vertex(vert)
return SumGraph([g_A, g_B])

def apply_cat4(g: BaseGraph[VT,ET], vert: VT) -> SumGraph:
"""Apply the cat4 decomposition to vertex verts of graph g. See: https://arxiv.org/pdf/2202.09202."""
check_catn(g,vert,4)
verts = List(g.neighbors(vert))
g_A = gen_catlike_term(g, verts, 0, Fraction(-1,2), 0, EdgeType.SIMPLE, EdgeType.SIMPLE, True, -1, Fraction(-1,4))
g_B = gen_catlike_term(g, verts, 0, 0, 0, EdgeType.HADAMARD, EdgeType.SIMPLE, True, 0, Fraction(1,2))
g_A.remove_vertex(vert)
g_B.remove_vertex(vert)
return SumGraph([g_A, g_B])

def apply_cat5(g: BaseGraph[VT,ET], vert: VT) -> SumGraph:
"""Apply the cat5 decomposition to vertex verts of graph g. See: https://arxiv.org/pdf/2202.09202."""
check_catn(g,vert,5)
verts = List(g.neighbors(vert))
g_A = gen_catlike_term(g, verts, 0, Fraction(-1,2), 0, EdgeType.SIMPLE, EdgeType.HADAMARD, True, -2, 0)
g_B = gen_catlike_term(g, verts, 0, 0, 0, EdgeType.HADAMARD, EdgeType.SIMPLE, True, -1, Fraction(3,4))
g_C = gen_catlike_term(g, verts, Fraction(1,2), 0, 0, EdgeType.HADAMARD, EdgeType.SIMPLE, False, -1, Fraction(1,4))
g_A.remove_vertex(vert)
g_B.remove_vertex(vert)
g_C.remove_vertex(vert)
return SumGraph([g_A, g_B, g_C])

def apply_cat6(g: BaseGraph[VT,ET], vert: VT) -> SumGraph:
"""Apply the cat6 decomposition to vertex verts of graph g. See: https://arxiv.org/pdf/2202.09202."""
check_catn(g,vert,6)
verts = List(g.neighbors(vert))
g_A = gen_catlike_term(g, verts, 0, Fraction(-1,2), 0, EdgeType.SIMPLE, EdgeType.SIMPLE, True, -2, 0)
g_B = gen_catlike_term(g, verts, 0, 0, 0, EdgeType.HADAMARD, EdgeType.SIMPLE, True, -1, Fraction(3,4))
g_C = gen_catlike_term(g, verts, Fraction(1,2), 0, 0, EdgeType.HADAMARD, EdgeType.SIMPLE, False, -1, Fraction(1,4))
g_A.remove_vertex(vert)
g_B.remove_vertex(vert)
g_C.remove_vertex(vert)
return SumGraph([g_A, g_B, g_C])

0 comments on commit 7342e3f

Please sign in to comment.