Paper: "Bag of Tricks and A Strong Baseline for Deep Person Re-identification"[pdf]
We plan to release those lightly backbones for Palmprint-recognition on this baseline[link]. You can use this project on your edge GPU device. Otherwise, we provide new backbone like transformer, we actually select small model.
model | method | ERR | mAP |
---|---|---|---|
resnet34 | |||
repVGG-A0 | |||
GhostNetv2 | |||
ShuffleNetv2 | |||
MobileNetv3 | |||
PyramidTNT-Ti | |||
G-Ghost RegNet | |||
SqueezeNet | |||
Swin-T |
@inproceedings{luo2019bag,
title={Bag of Tricks and A Strong Baseline for Deep Person Re-identification},
author={Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops},
year={2019}
}
.
├── config # hyperparameters settings
│ └── ...
├── datasets # data loader
│ └── ...
├── log # log and model weights
├── loss # loss function code
│ └── ...
├── model # model
│ └── ...
├── processor # training and testing procedures
│ └── ...
├── solver # optimization code
│ └── ...
├── tools # tools
│ └── ...
├── utils # metrics code
│ └── ...
├── train.py # train code
├── test.py # test code
├── get_vis_result.py # get visualized results
├── docs # docs for readme
└── README.md
-
cd
to folder where you want to download this repo -
Run
git clone https://github.com/zzk2021/Palmprint-recognition-Lightly-Neural-Network-Baseline.git
-
Install dependencies:
- pytorch>=0.4
- torchvision
- cv2 (for preprocess)
python train.py
python test.py
To get visualized reID results, first create results
folder in log dir, then:
python ./tools/get_vis_result.py