Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue 246: Standarise outputs #358

Merged
merged 20 commits into from
Jul 17, 2024
Merged

Issue 246: Standarise outputs #358

merged 20 commits into from
Jul 17, 2024

Conversation

seabbs
Copy link
Collaborator

@seabbs seabbs commented Jul 10, 2024

This PR closes #246

It standardises all submodels currently in use to have a single return unless otherwise required (currently only the observation error prior model).

It looks like this gives a nice little performance boost and definitely cleans up the interface.

Note that in testing I found having a ExpectObs observation model that adds deterministic recording - perhaps we want this? or alternatively we need a better pattern for reconstructing those parts of the model.

Something else that I realised when testing is we have zero parameter recover tests of any kind. Having these for a picked ad backend would probably catch a lot of issues when developing models. Not sure where these sit in the world where you can have gradient tests (and those would overlap heavily with our benchmarks).

I in general also still find chain objects really clunky and really just want them in a long format data frame with variables by index and name (i.e expected obs in one column and index in another) - I think I've just been spoiled by tidybayes here.

This PR also cheekily closes #345 and updates observation stacking to avoid mutating a tuple.

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 10 Jul 2024 - 12:02
    • Baseline: 10 Jul 2024 - 12:19
  • Package commits:
    • Target: 701b5e
    • Baseline: 7bf272
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "AR", "evaluation", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "AR", "evaluation", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.88 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 0.90 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.91 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.98 (5%) 0.99 (1%) ✅
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 0.90 (5%) ✅ 0.93 (1%) ✅
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 0.92 (5%) ✅ 0.91 (1%) ✅
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.90 (5%) ✅ 0.85 (1%) ✅
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.90 (5%) ✅ 0.81 (1%) ✅
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.92 (5%) ✅ 0.96 (1%) ✅
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.91 (5%) ✅ 0.95 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 0.68 (5%) ✅ 0.89 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 0.65 (5%) ✅ 0.85 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.57 (5%) ✅ 0.69 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.64 (5%) ✅ 0.62 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.73 (5%) ✅ 0.91 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.72 (5%) ✅ 0.89 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.56 (5%) ✅ 0.49 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.56 (5%) ✅ 0.49 (1%) ✅
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.91 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.90 (5%) ✅ 0.98 (1%) ✅
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.91 (5%) ✅ 0.98 (1%) ✅
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.89 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "Intercept", "evaluation", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "Intercept", "evaluation", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.97 (5%) 1.01 (1%) ❌
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.97 (5%) 1.01 (1%) ❌
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 0.95 (5%) ✅ 0.96 (1%) ✅
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 0.95 (5%) ✅ 0.96 (1%) ✅
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.92 (5%) ✅ 0.90 (1%) ✅
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.95 (5%) 0.90 (1%) ✅
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 0.99 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.95 (5%) ✅ 0.99 (1%)
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.81 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "linked"] 0.88 (5%) ✅ 0.99 (1%) ✅
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "standard"] 0.92 (5%) ✅ 0.99 (1%) ✅
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.77 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.97 (5%) 0.99 (1%) ✅
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.96 (5%) 0.99 (1%) ✅
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 0.85 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.84 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 0.99 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.97 (5%) 0.99 (1%) ✅
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 0.80 (5%) ✅ 0.82 (1%) ✅
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 0.80 (5%) ✅ 0.82 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.82 (5%) ✅ 0.82 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.82 (5%) ✅ 0.82 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.95 (5%) ✅ 0.98 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 2.40 (5%) ❌ 1.39 (1%) ❌
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 0.97 (5%) 0.92 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 0.96 (5%) 0.92 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.95 (5%) ✅ 0.92 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.94 (5%) ✅ 0.92 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.97 (5%) 0.97 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.99 (5%) 0.96 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 0.78 (5%) ✅ 0.94 (1%) ✅
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 0.80 (5%) ✅ 0.93 (1%) ✅
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.82 (5%) ✅ 0.91 (1%) ✅
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.83 (5%) ✅ 0.90 (1%) ✅
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 0.93 (1%) ✅
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.94 (5%) ✅ 0.83 (1%) ✅
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.89 (5%) ✅ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.89 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1022-azure #23~22.04.1-Ubuntu SMP Thu May  9 17:59:24 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3200 MHz       9041 s          0 s        643 s      13406 s          0 s
       #2  2573 MHz       9044 s          0 s        581 s      13483 s          0 s
       #3  2445 MHz       6948 s          0 s        561 s      15576 s          0 s
       #4  3244 MHz       5521 s          0 s        506 s      17063 s          0 s
  Memory: 15.606491088867188 GB (13262.4296875 MB free)
  Uptime: 2316.09 sec
  Load Avg:  1.01  1.04  1.11
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1022-azure #23~22.04.1-Ubuntu SMP Thu May  9 17:59:24 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3158 MHz      11782 s          0 s        837 s      20386 s          0 s
       #2  2445 MHz      11097 s          0 s        712 s      21213 s          0 s
       #3  2749 MHz       9266 s          0 s        716 s      23019 s          0 s
       #4  3243 MHz       8033 s          0 s        662 s      24310 s          0 s
  Memory: 15.606491088867188 GB (12841.68359375 MB free)
  Uptime: 3309.34 sec
  Load Avg:  1.17  1.06  1.04
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 10 Jul 2024 - 12:2
  • Package commit: 701b5e
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.079 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 306.024 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 304.608 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 442.035 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 449.929 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.428 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.277 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 595.944 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 584.390 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "linked"] 154.519 μs (5%) 91.09 KiB (1%) 791
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "standard"] 153.066 μs (5%) 91.06 KiB (1%) 791
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 212.731 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 211.767 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 308.540 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 312.395 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.308 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.368 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 594.933 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 598.665 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "linked"] 148.037 μs (5%) 89.31 KiB (1%) 768
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "standard"] 148.477 μs (5%) 89.28 KiB (1%) 768
["EpiLatentModels", "AR", "evaluation", "linked"] 1.456 μs (5%) 2.66 KiB (1%) 31
["EpiLatentModels", "AR", "evaluation", "standard"] 1.121 μs (5%) 1.61 KiB (1%) 24
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.763 μs (5%) 7.92 KiB (1%) 41
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.200 μs (5%) 6.36 KiB (1%) 32
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 87.894 μs (5%) 50.97 KiB (1%) 1035
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 53.700 μs (5%) 39.67 KiB (1%) 776
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.105 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.447 μs (5%) 2.44 KiB (1%) 38
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.298 μs (5%) 2.73 KiB (1%) 29
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.110 μs (5%) 1.86 KiB (1%) 25
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.883 μs (5%) 5.41 KiB (1%) 36
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.645 μs (5%) 4.53 KiB (1%) 32
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.790 μs (5%) 24.89 KiB (1%) 444
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.691 μs (5%) 18.95 KiB (1%) 335
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.429 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.227 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 63.368 μs (5%) 51.08 KiB (1%) 566
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 59.822 μs (5%) 36.50 KiB (1%) 522
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 132.979 μs (5%) 113.62 KiB (1%) 1156
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 126.457 μs (5%) 83.75 KiB (1%) 1064
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 179.637 μs (5%) 103.88 KiB (1%) 1636
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 138.048 μs (5%) 79.05 KiB (1%) 1340
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.873 μs (5%) 480 bytes (1%) 4
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.231 μs (5%) 2.72 KiB (1%) 40
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.381 μs (5%) 29.92 KiB (1%) 209
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 9.438 μs (5%) 21.48 KiB (1%) 179
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 12.453 μs (5%) 33.03 KiB (1%) 219
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.599 μs (5%) 24.59 KiB (1%) 189
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 75.101 μs (5%) 59.12 KiB (1%) 781
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 54.622 μs (5%) 45.86 KiB (1%) 652
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.964 μs (5%) 1.30 KiB (1%) 28
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.875 μs (5%) 1.30 KiB (1%) 28
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.549 μs (5%) 3.62 KiB (1%) 32
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.197 μs (5%) 1.94 KiB (1%) 26
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.792 μs (5%) 10.08 KiB (1%) 40
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.377 μs (5%) 8.39 KiB (1%) 34
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 63.599 μs (5%) 42.86 KiB (1%) 852
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.858 μs (5%) 36.58 KiB (1%) 753
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.630 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.806 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 364.817 ns (5%) 736 bytes (1%) 6
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 303.167 ns (5%) 576 bytes (1%) 5
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 877.600 ns (5%) 4.08 KiB (1%) 12
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 813.304 ns (5%) 3.92 KiB (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 48.521 μs (5%) 26.67 KiB (1%) 525
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 32.601 μs (5%) 21.30 KiB (1%) 415
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.932 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.737 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "linked"] 382.636 μs (5%) 242.33 KiB (1%) 1731
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "standard"] 311.834 μs (5%) 228.16 KiB (1%) 1359
["EpiLatentModels", "Intercept", "evaluation", "linked"] 246.759 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 247.102 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 354.009 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 354.606 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.321 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.255 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 488.451 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 489.680 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "linked"] 224.069 μs (5%) 102.67 KiB (1%) 1022
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "standard"] 226.824 μs (5%) 102.64 KiB (1%) 1022
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.832 μs (5%) 3.19 KiB (1%) 28
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.650 μs (5%) 2.72 KiB (1%) 25
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.515 μs (5%) 6.55 KiB (1%) 34
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.305 μs (5%) 6.08 KiB (1%) 31
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 51.788 μs (5%) 29.00 KiB (1%) 546
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.656 μs (5%) 23.31 KiB (1%) 434
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.972 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.720 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 703.301 ns (5%) 1.23 KiB (1%) 13
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 585.714 ns (5%) 816 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.467 μs (5%) 5.00 KiB (1%) 20
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.308 μs (5%) 4.56 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.916 μs (5%) 30.42 KiB (1%) 610
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.659 μs (5%) 25.55 KiB (1%) 519
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.604 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.725 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 307.902 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 309.118 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 402.105 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 402.500 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.564 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.580 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 565.082 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 563.174 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "linked"] 204.754 μs (5%) 106.57 KiB (1%) 1018
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "standard"] 208.682 μs (5%) 106.54 KiB (1%) 1018
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.774 μs (5%) 3.61 KiB (1%) 39
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.451 μs (5%) 2.30 KiB (1%) 33
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.619 μs (5%) 8.55 KiB (1%) 46
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.179 μs (5%) 7.23 KiB (1%) 40
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 54.923 μs (5%) 36.75 KiB (1%) 727
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.837 μs (5%) 31.88 KiB (1%) 655
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.414 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.818 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 1.959 μs (5%) 4.14 KiB (1%) 41
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.448 μs (5%) 2.25 KiB (1%) 31
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.721 μs (5%) 7.22 KiB (1%) 51
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.022 μs (5%) 5.06 KiB (1%) 39
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 80.581 μs (5%) 40.33 KiB (1%) 719
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.166 μs (5%) 27.19 KiB (1%) 465
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.074 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.677 μs (5%) 384 bytes (1%) 6
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.583 μs (5%) 3.52 KiB (1%) 53
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.567 μs (5%) 3.52 KiB (1%) 53
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.435 μs (5%) 3.86 KiB (1%) 60
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.385 μs (5%) 3.86 KiB (1%) 60
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.935 μs (5%) 41.64 KiB (1%) 969
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 34.254 μs (5%) 36.42 KiB (1%) 860
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.777 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.782 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 135.283 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 136.075 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 135.413 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 133.881 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 667.119 μs (5%) 888.52 KiB (1%) 9444
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 637.433 μs (5%) 883.30 KiB (1%) 9335
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 56.325 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 55.113 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.689 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.665 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.879 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.838 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.364 μs (5%) 13.27 KiB (1%) 291
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.833 μs (5%) 8.05 KiB (1%) 182
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.253 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.074 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.517 μs (5%) 8.75 KiB (1%) 77
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.212 μs (5%) 7.50 KiB (1%) 69
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.933 μs (5%) 15.61 KiB (1%) 85
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.617 μs (5%) 14.36 KiB (1%) 77
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 90.049 μs (5%) 61.16 KiB (1%) 1132
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 71.674 μs (5%) 49.06 KiB (1%) 1014
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.646 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.495 μs (5%) 544 bytes (1%) 11

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1022-azure #23~22.04.1-Ubuntu SMP Thu May  9 17:59:24 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3200 MHz       9041 s          0 s        643 s      13406 s          0 s
       #2  2573 MHz       9044 s          0 s        581 s      13483 s          0 s
       #3  2445 MHz       6948 s          0 s        561 s      15576 s          0 s
       #4  3244 MHz       5521 s          0 s        506 s      17063 s          0 s
  Memory: 15.606491088867188 GB (13262.4296875 MB free)
  Uptime: 2316.09 sec
  Load Avg:  1.01  1.04  1.11
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 10 Jul 2024 - 12:19
  • Package commit: 7bf272
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.083 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 298.204 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 308.106 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 446.714 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 447.253 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.397 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.508 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 582.270 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 579.824 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "linked"] 160.220 μs (5%) 91.09 KiB (1%) 791
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "standard"] 159.328 μs (5%) 91.06 KiB (1%) 791
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 226.072 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 217.519 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 312.544 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 309.305 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.258 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.427 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 589.809 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 599.615 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "linked"] 156.273 μs (5%) 89.31 KiB (1%) 768
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "standard"] 154.620 μs (5%) 89.28 KiB (1%) 768
["EpiLatentModels", "AR", "evaluation", "linked"] 1.564 μs (5%) 2.66 KiB (1%) 31
["EpiLatentModels", "AR", "evaluation", "standard"] 1.189 μs (5%) 1.61 KiB (1%) 24
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.817 μs (5%) 7.92 KiB (1%) 41
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.510 μs (5%) 6.36 KiB (1%) 32
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 93.495 μs (5%) 51.12 KiB (1%) 1038
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 55.584 μs (5%) 39.83 KiB (1%) 779
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.374 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.486 μs (5%) 2.44 KiB (1%) 38
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.440 μs (5%) 2.73 KiB (1%) 29
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.173 μs (5%) 1.86 KiB (1%) 25
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.023 μs (5%) 5.41 KiB (1%) 36
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.814 μs (5%) 4.53 KiB (1%) 32
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.651 μs (5%) 25.11 KiB (1%) 450
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.252 μs (5%) 19.17 KiB (1%) 341
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.433 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.215 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 70.371 μs (5%) 54.75 KiB (1%) 626
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 65.372 μs (5%) 40.17 KiB (1%) 582
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 147.446 μs (5%) 133.47 KiB (1%) 1276
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 139.761 μs (5%) 103.59 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 196.298 μs (5%) 107.70 KiB (1%) 1700
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 151.985 μs (5%) 82.88 KiB (1%) 1404
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.853 μs (5%) 480 bytes (1%) 4
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.114 μs (5%) 2.72 KiB (1%) 40
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 16.732 μs (5%) 33.77 KiB (1%) 281
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 14.468 μs (5%) 25.33 KiB (1%) 251
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.661 μs (5%) 48.22 KiB (1%) 301
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 16.651 μs (5%) 39.78 KiB (1%) 271
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 102.803 μs (5%) 64.69 KiB (1%) 908
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 76.002 μs (5%) 51.42 KiB (1%) 779
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.074 μs (5%) 2.66 KiB (1%) 78
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.874 μs (5%) 2.66 KiB (1%) 78
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.689 μs (5%) 3.62 KiB (1%) 32
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.242 μs (5%) 1.94 KiB (1%) 26
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.057 μs (5%) 10.08 KiB (1%) 40
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.461 μs (5%) 8.39 KiB (1%) 34
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 70.602 μs (5%) 43.53 KiB (1%) 866
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 51.547 μs (5%) 37.25 KiB (1%) 767
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.758 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.752 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 375.558 ns (5%) 736 bytes (1%) 6
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 324.431 ns (5%) 576 bytes (1%) 5
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 980.800 ns (5%) 4.08 KiB (1%) 12
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 842.304 ns (5%) 3.92 KiB (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.605 μs (5%) 26.75 KiB (1%) 528
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 34.535 μs (5%) 21.38 KiB (1%) 418
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.952 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.742 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "linked"] 401.021 μs (5%) 242.48 KiB (1%) 1735
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "standard"] 332.452 μs (5%) 228.31 KiB (1%) 1363
["EpiLatentModels", "Intercept", "evaluation", "linked"] 263.500 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 260.621 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 347.814 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 345.155 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.447 μs (5%) 3.48 KiB (1%) 75
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.381 μs (5%) 3.48 KiB (1%) 75
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 475.092 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 474.134 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "linked"] 240.601 μs (5%) 102.61 KiB (1%) 1022
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "standard"] 237.404 μs (5%) 102.58 KiB (1%) 1022
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.931 μs (5%) 3.31 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.737 μs (5%) 2.84 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.741 μs (5%) 7.23 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.423 μs (5%) 6.77 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 55.383 μs (5%) 29.19 KiB (1%) 551
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 37.650 μs (5%) 23.50 KiB (1%) 439
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.958 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.748 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 758.257 ns (5%) 1.23 KiB (1%) 13
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 591.049 ns (5%) 816 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.808 μs (5%) 5.00 KiB (1%) 20
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.331 μs (5%) 4.56 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.569 μs (5%) 30.53 KiB (1%) 613
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 32.360 μs (5%) 25.66 KiB (1%) 522
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.559 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.647 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 319.142 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 317.382 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 431.960 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 420.590 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.606 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.693 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 551.359 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 550.543 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "linked"] 231.433 μs (5%) 107.71 KiB (1%) 1039
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "standard"] 227.555 μs (5%) 107.68 KiB (1%) 1039
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.938 μs (5%) 3.61 KiB (1%) 39
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.537 μs (5%) 2.30 KiB (1%) 33
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.811 μs (5%) 8.55 KiB (1%) 46
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.816 μs (5%) 7.23 KiB (1%) 40
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 56.896 μs (5%) 37.14 KiB (1%) 738
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.379 μs (5%) 32.27 KiB (1%) 666
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.537 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.856 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.299 μs (5%) 4.14 KiB (1%) 41
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.576 μs (5%) 2.25 KiB (1%) 31
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.839 μs (5%) 7.22 KiB (1%) 51
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.399 μs (5%) 5.06 KiB (1%) 39
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 85.901 μs (5%) 40.66 KiB (1%) 725
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 47.459 μs (5%) 27.52 KiB (1%) 471
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.214 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.698 μs (5%) 384 bytes (1%) 6
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 4.476 μs (5%) 4.30 KiB (1%) 72
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 4.467 μs (5%) 4.30 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.422 μs (5%) 4.72 KiB (1%) 79
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.327 μs (5%) 4.72 KiB (1%) 79
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 53.621 μs (5%) 42.55 KiB (1%) 990
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 14.266 μs (5%) 26.19 KiB (1%) 610
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.911 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.600 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 137.989 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 138.460 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 138.119 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 137.307 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 677.107 μs (5%) 889.12 KiB (1%) 9453
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 648.955 μs (5%) 883.91 KiB (1%) 9344
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 52.759 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 56.306 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.749 μs (5%) 1.56 KiB (1%) 28
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.731 μs (5%) 1.56 KiB (1%) 28
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.985 μs (5%) 1.80 KiB (1%) 33
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.953 μs (5%) 1.80 KiB (1%) 33
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.125 μs (5%) 13.61 KiB (1%) 296
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.883 μs (5%) 8.39 KiB (1%) 187
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.323 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.061 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 5.807 μs (5%) 9.33 KiB (1%) 93
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 5.280 μs (5%) 8.08 KiB (1%) 85
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.237 μs (5%) 17.19 KiB (1%) 101
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 6.733 μs (5%) 15.94 KiB (1%) 93
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 95.779 μs (5%) 65.42 KiB (1%) 1277
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 76.112 μs (5%) 58.95 KiB (1%) 1160
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.335 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.165 μs (5%) 544 bytes (1%) 11

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1022-azure #23~22.04.1-Ubuntu SMP Thu May  9 17:59:24 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3158 MHz      11782 s          0 s        837 s      20386 s          0 s
       #2  2445 MHz      11097 s          0 s        712 s      21213 s          0 s
       #3  2749 MHz       9266 s          0 s        716 s      23019 s          0 s
       #4  3243 MHz       8033 s          0 s        662 s      24310 s          0 s
  Memory: 15.606491088867188 GB (12841.68359375 MB free)
  Uptime: 3309.34 sec
  Load Avg:  1.17  1.06  1.04
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.86
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@seabbs seabbs force-pushed the issue246 branch 3 times, most recently from 4b0398a to a0c5ad7 Compare July 10, 2024 21:11
@seabbs seabbs marked this pull request as ready for review July 10, 2024 22:55
@seabbs seabbs requested a review from SamuelBrand1 July 10, 2024 22:55
@codecov-commenter
Copy link

codecov-commenter commented Jul 10, 2024

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 93.07%. Comparing base (717f586) to head (1e76fd9).

Additional details and impacted files
@@            Coverage Diff             @@
##             main     #358      +/-   ##
==========================================
- Coverage   93.09%   93.07%   -0.02%     
==========================================
  Files          50       50              
  Lines         521      520       -1     
==========================================
- Hits          485      484       -1     
  Misses         36       36              

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

@SamuelBrand1
Copy link
Collaborator

It standardises all submodels currently in use to have a single return unless otherwise required (currently only the observation error prior model).

It looks like this gives a nice little performance boost and definitely cleans up the interface.

Love it.

@SamuelBrand1
Copy link
Collaborator

SamuelBrand1 commented Jul 11, 2024

Something else that I realised when testing is we have zero parameter recover tests of any kind. Having these for a picked ad backend would probably catch a lot of issues when developing models. Not sure where these sit in the world where you can have gradient tests (and those would overlap heavily with our benchmarks).

Its not quite zero e.g

# Theoretical posterior distribution for intercept
# if \beta ~ int.intercept_prior = N(\mu_0, \sigma_0) and \sigma^2 = 1 for
# the white noise
# then the posterior distribution for the intercept is Normal
# \mathcal{N}(\text{mean} = (n * \sigma_0^2 * ȳ + \mu_0) / (n * \sigma_0^2 + 1),
# \text{var} = \sigma_0^2 / (n * \sigma_0^2 + 1))
post_mean = (n * var(int.intercept_prior) * mean(y) + mean(int.intercept_prior)) /
(n * var(int.intercept_prior) + 1)
post_var = var(int.intercept_prior) / (n * var(int.intercept_prior) + 1)
post_dist = Normal(post_mean, sqrt(post_var))
samples = get(chain, :var"Combine.1.intercept").var"Combine.1.intercept" |> vec
ks_test_pval = ExactOneSampleKSTest(samples, post_dist) |> pvalue
@test ks_test_pval > 1e-6
end

Where we test against ability to recover samples from a known (as in analytically derivable) posterior distribution using data generated randomly from the test model, which captures correct inference of parameter uncertainty.

Are you proposing a test more aimed at checking true parameters are not in the tails of the posterior distribution (i.e. Bayesian posterior P value, I think that would be good. In a sense thats a less rigourous test, i.e. testing inference has not generated unreasonable tails compared to the whole distribution has to be good but its widely applicable outside of solvable situations.

@SamuelBrand1
Copy link
Collaborator

SamuelBrand1 commented Jul 11, 2024

I in general also still find chain objects really clunky and really just want them in a long format data frame with variables by index and name (i.e expected obs in one column and index in another) - I think I've just been spoiled by tidybayes here.

Wide format conversion from Chains to dataFrame (e.g. EpiAware.EpiAwareUtils.spread_draws) was very easy to implement; want to make an issue?

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 11, 2024

Its not quite zero e.g

What I mean here is we don't use anything that uses the gradients which is the most important thing for actually using the methods in the real world. All the prior methods are just sampling directly which is good to check but it leaves a gap where bugs can happen

@SamuelBrand1
Copy link
Collaborator

Its not quite zero e.g

What I mean here is we don't use anything that uses the gradients which is the most important thing for actually using the methods in the real world. All the prior methods are just sampling directly which is good to check but it leaves a gap where bugs can happen

But it is sampling with NUTS so a grad error is a sufficient condition to fail this test because a silent grad error will almost certainly cause an incorrect posterior. But I know what you mean.

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 11, 2024

But it is sampling with NUTS so a grad error is a sufficient condition to fail this test because a silent grad error will almost certainly cause an incorrect posterior. But I know what you mean.

Oh right yes sorry but that is the only example of that I think

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 11, 2024

@SamuelBrand1 I think this is good to review. If you see anything that would be a good target for further issues that would be great.

Note #363 exists for betting handling of posterior outputs

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 11, 2024

I think the issue is that it can't detect the branch name when its been updated via a rebase - a bit annoying but not the end of the world

@seabbs seabbs enabled auto-merge July 11, 2024 16:16
@seabbs seabbs requested a review from SamuelBrand1 July 11, 2024 16:16
@SamuelBrand1
Copy link
Collaborator

Yes I think you could be right but I don't think we have evidence here?

The evidence is just known better compiler performance under type stability... but this is a flag for an issue rather than about this PR

@seabbs seabbs closed this Jul 11, 2024
auto-merge was automatically disabled July 11, 2024 18:55

Pull request was closed

@seabbs seabbs reopened this Jul 11, 2024
@seabbs
Copy link
Collaborator Author

seabbs commented Jul 11, 2024

I'm testing benchmarks on #367. I've played around a bunch and I can't really see what in this PR would be causing this new benchmark failure (the change since it worked was the hotfixes to main which included all of the EpiObsModel benchmarks which had been missed out before).Any thoughts. If not thoughts and if #367 doesn't shed any light perhaps we merge as is and make a issue to explore?

The error message seems to be about loading previous benchmark results. It could be because suite is misconfigured the earlier guess about the rebase (but I think not)

@SamuelBrand1
Copy link
Collaborator

The error message seems to be about loading previous benchmark results. It could be because suite is misconfigured the earlier guess about the rebase (but I think not)

Yes there is a MethodError

ERROR: MethodError: no method matching loadparams!(::BenchmarkGroup, ::BenchmarkTools.Parameters, ::Symbol, ::Symbol)

Has the pattern changed, because the method signature

loadparams!(::BenchmarkGroup, !Matched::BenchmarkGroup, ::Any...)

Is quite close?

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 12, 2024

Yes I am seeing that and no not that I can see.

#367 works and so this is either an issue with a change in this PR or its an issue with the configuration of the PR (which would be weird). Going to cherry pick some bits into their own PRs

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 15, 2024

https://github.com/JuliaCI/PkgBenchmark.jl/blob/6aab4956fbdf7e79a57cda260a2175bf5e13252a/src/runbenchmark.jl#L277

This is the line that is throwing the error I believe and I believe this indicates that the structure of the benchmarking job is changing between main and this PR. I struggle to understand why that might be given they share the same dependencies and benchmarks haven't been changed but am testing this but forcing a retune to see if that resolves the issue. If it does I guess we keep it off, make and issue, and investigate at our leisure. It could be some weird interaction from make_turing_suite and changes in the underlying Turing models resulting in modifications to that between PRs?

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 16, 2024

This didn't address the problem but reading the code it seems like loadparam shouldn't be being hit at all. This makes me wonder if its using code from main here. Going to hotfix there and rebase.

Copy link
Collaborator

@SamuelBrand1 SamuelBrand1 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM.

As context, during f2f discussion we isolated a problem with BenchmarkCI; it was making its own call to pkgbenchmark which was not receiving a retune command to create a new branch -> main tuning file which seems to be required for running the Turing benchmarks.

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 16, 2024

There is still an issue here but it's now further in than the original. It still looks like the structure of suite is different between the two branches. I'll step through again and look locally using debugger

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 16, 2024

The problem is now in PkgBenchmark

 PkgBenchmark: benchmark results written to .benchmarkci/result-baseline.json
┌ Info: Finish running benchmarks.
│ * Target: 47 minutes 58 seconds
└ * Baseline: 41 minutes 34 seconds
ERROR: MethodError: no method matching judge(::BenchmarkTools.TrialEstimate, ::BenchmarkTools.BenchmarkGroup)
Closest candidates are:
  judge(::BenchmarkTools.TrialEstimate, !Matched::BenchmarkTools.TrialEstimate; kwargs...)
   @ BenchmarkTools ~/.julia/packages/BenchmarkTools/QNsku/src/trials.jl:221
  judge(!Matched::BenchmarkTools.BenchmarkGroup...; kwargs...)

Same problem in the sense that of the outputs isn't in the expected format for judge

@seabbs
Copy link
Collaborator Author

seabbs commented Jul 17, 2024

I think our conclusion is we should merge now and deal with benchmarks as an issue

@seabbs seabbs added this pull request to the merge queue Jul 17, 2024
Merged via the queue into main with commit 2ab2cf7 Jul 17, 2024
10 of 11 checks passed
@seabbs seabbs deleted the issue246 branch July 17, 2024 17:21
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
3 participants