Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Testing Benchmarks - do not merge #367

Closed
wants to merge 1 commit into from
Closed

Testing Benchmarks - do not merge #367

wants to merge 1 commit into from

Conversation

seabbs
Copy link
Collaborator

@seabbs seabbs commented Jul 11, 2024

No description provided.

@codecov-commenter
Copy link

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 93.09%. Comparing base (929eee8) to head (c1cfbea).

Additional details and impacted files
@@           Coverage Diff           @@
##             main     #367   +/-   ##
=======================================
  Coverage   93.09%   93.09%           
=======================================
  Files          50       50           
  Lines         521      521           
=======================================
  Hits          485      485           
  Misses         36       36           

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 11 Jul 2024 - 22:13
    • Baseline: 11 Jul 2024 - 22:35
  • Package commits:
    • Target: e7ccb4
    • Baseline: 929eee
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.86 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.12 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.90 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.78 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.81 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "linked"] 1.16 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "standard"] 1.16 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.91 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.81 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.84 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.12 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.19 (5%) ✅ 1.00 (1%)
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.17 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.89 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.90 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "PoissonError", "evaluation", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.86 (5%) ✅ 1.00 (1%)
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.14 (5%) ❌ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.89 (5%) ❌ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.10 (5%) ❌ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 0.62 (5%) ✅ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 0.63 (5%) ✅ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.12 (5%) ❌ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.11 (5%) ❌ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.05 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()", "linked"] 1.10 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()", "standard"] 1.08 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1023-azure #24~22.04.1-Ubuntu SMP Wed Jun 12 19:55:26 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      10034 s          0 s        703 s      20872 s          0 s
       #2  2590 MHz       8880 s          0 s        659 s      22068 s          0 s
       #3  2445 MHz       9170 s          0 s        714 s      21723 s          0 s
       #4  3243 MHz      10832 s          0 s        695 s      20096 s          0 s
  Memory: 15.606487274169922 GB (12930.19921875 MB free)
  Uptime: 3169.46 sec
  Load Avg:  1.05  1.03  1.05
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1023-azure #24~22.04.1-Ubuntu SMP Wed Jun 12 19:55:26 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      12481 s          0 s        928 s      31604 s          0 s
       #2  3244 MHz      11075 s          0 s        865 s      33073 s          0 s
       #3  2586 MHz      13468 s          0 s        928 s      30624 s          0 s
       #4  2445 MHz      14968 s          0 s        913 s      29149 s          0 s
  Memory: 15.606487274169922 GB (12420.01953125 MB free)
  Uptime: 4512.52 sec
  Load Avg:  1.08  1.04  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 11 Jul 2024 - 22:13
  • Package commit: e7ccb4
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.083 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 302.504 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 311.145 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 448.005 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 461.621 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.548 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.477 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 578.500 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 580.104 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "linked"] 188.512 μs (5%) 91.09 KiB (1%) 791
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "standard"] 194.353 μs (5%) 91.06 KiB (1%) 791
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 216.548 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 217.614 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 321.232 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 318.590 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.337 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.388 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 581.253 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 587.840 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "linked"] 187.521 μs (5%) 89.31 KiB (1%) 768
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "standard"] 186.859 μs (5%) 89.28 KiB (1%) 768
["EpiLatentModels", "AR", "evaluation", "linked"] 1.555 μs (5%) 2.66 KiB (1%) 31
["EpiLatentModels", "AR", "evaluation", "standard"] 1.198 μs (5%) 1.61 KiB (1%) 24
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.864 μs (5%) 7.92 KiB (1%) 41
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.200 μs (5%) 6.36 KiB (1%) 32
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 101.219 μs (5%) 51.12 KiB (1%) 1038
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 63.950 μs (5%) 39.83 KiB (1%) 779
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.198 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.483 μs (5%) 2.44 KiB (1%) 38
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.423 μs (5%) 2.73 KiB (1%) 29
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.182 μs (5%) 1.86 KiB (1%) 25
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.943 μs (5%) 5.41 KiB (1%) 36
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.724 μs (5%) 4.53 KiB (1%) 32
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.953 μs (5%) 25.11 KiB (1%) 450
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.675 μs (5%) 19.17 KiB (1%) 341
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.437 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.227 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 68.187 μs (5%) 54.75 KiB (1%) 626
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 64.320 μs (5%) 40.17 KiB (1%) 582
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 140.383 μs (5%) 133.47 KiB (1%) 1276
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 133.700 μs (5%) 103.59 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 205.564 μs (5%) 107.70 KiB (1%) 1700
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 159.307 μs (5%) 82.88 KiB (1%) 1404
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.815 μs (5%) 480 bytes (1%) 4
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.165 μs (5%) 2.72 KiB (1%) 40
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 17.012 μs (5%) 33.77 KiB (1%) 281
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 14.507 μs (5%) 25.33 KiB (1%) 251
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 19.656 μs (5%) 48.22 KiB (1%) 301
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 17.342 μs (5%) 39.78 KiB (1%) 271
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 109.995 μs (5%) 64.69 KiB (1%) 908
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 83.596 μs (5%) 51.42 KiB (1%) 779
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.861 μs (5%) 2.66 KiB (1%) 78
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.695 μs (5%) 2.66 KiB (1%) 78
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.598 μs (5%) 3.62 KiB (1%) 32
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.276 μs (5%) 1.94 KiB (1%) 26
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.829 μs (5%) 10.08 KiB (1%) 40
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.463 μs (5%) 8.39 KiB (1%) 34
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 77.224 μs (5%) 43.53 KiB (1%) 866
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 53.721 μs (5%) 37.25 KiB (1%) 767
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.661 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.684 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 386.651 ns (5%) 736 bytes (1%) 6
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 320.171 ns (5%) 576 bytes (1%) 5
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 946.700 ns (5%) 4.08 KiB (1%) 12
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 874.718 ns (5%) 3.92 KiB (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 52.598 μs (5%) 26.75 KiB (1%) 528
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 37.701 μs (5%) 21.38 KiB (1%) 418
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.924 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.760 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "linked"] 469.817 μs (5%) 242.48 KiB (1%) 1735
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "standard"] 374.359 μs (5%) 228.31 KiB (1%) 1363
["EpiLatentModels", "Intercept", "evaluation", "linked"] 244.628 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 245.815 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 348.488 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 344.562 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.629 μs (5%) 3.48 KiB (1%) 75
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.621 μs (5%) 3.48 KiB (1%) 75
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 489.379 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 497.165 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "linked"] 354.314 μs (5%) 102.61 KiB (1%) 1022
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "standard"] 353.822 μs (5%) 102.58 KiB (1%) 1022
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.941 μs (5%) 3.31 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.760 μs (5%) 2.84 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.699 μs (5%) 7.23 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.407 μs (5%) 6.77 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 55.734 μs (5%) 29.19 KiB (1%) 551
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.147 μs (5%) 23.50 KiB (1%) 439
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.994 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.726 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 751.636 ns (5%) 1.23 KiB (1%) 13
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 624.443 ns (5%) 816 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.495 μs (5%) 5.00 KiB (1%) 20
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.345 μs (5%) 4.56 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 48.030 μs (5%) 30.53 KiB (1%) 613
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 33.182 μs (5%) 25.66 KiB (1%) 522
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.610 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.665 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 315.361 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 325.459 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 412.720 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 418.372 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.019 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.938 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 565.600 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 558.892 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "linked"] 257.280 μs (5%) 107.71 KiB (1%) 1039
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "standard"] 258.914 μs (5%) 107.68 KiB (1%) 1039
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.869 μs (5%) 3.61 KiB (1%) 39
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.532 μs (5%) 2.30 KiB (1%) 33
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.730 μs (5%) 8.55 KiB (1%) 46
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.279 μs (5%) 7.23 KiB (1%) 40
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.349 μs (5%) 37.14 KiB (1%) 738
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.030 μs (5%) 32.27 KiB (1%) 666
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.474 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.807 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.037 μs (5%) 4.14 KiB (1%) 41
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.473 μs (5%) 2.25 KiB (1%) 31
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.783 μs (5%) 7.22 KiB (1%) 51
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.047 μs (5%) 5.06 KiB (1%) 39
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 95.128 μs (5%) 40.66 KiB (1%) 725
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 56.535 μs (5%) 27.52 KiB (1%) 471
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.180 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.648 μs (5%) 384 bytes (1%) 6
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 4.458 μs (5%) 4.30 KiB (1%) 72
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 4.441 μs (5%) 4.30 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.367 μs (5%) 4.72 KiB (1%) 79
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.258 μs (5%) 4.72 KiB (1%) 79
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 53.620 μs (5%) 42.55 KiB (1%) 990
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.597 μs (5%) 37.33 KiB (1%) 881
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.134 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 957.250 ns (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 145.902 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 145.121 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 142.546 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 141.755 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 677.856 μs (5%) 889.12 KiB (1%) 9453
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 657.698 μs (5%) 883.91 KiB (1%) 9344
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 57.718 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 55.614 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.199 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.179 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.806 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.732 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.365 μs (5%) 39.16 KiB (1%) 963
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.747 μs (5%) 33.94 KiB (1%) 854
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.766 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.601 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoZygote()", "linked"] 1.429 ms (5%) 393.78 KiB (1%) 6236
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoZygote()", "standard"] 1.350 ms (5%) 382.22 KiB (1%) 5872
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.823 μs (5%) 1.83 KiB (1%) 24
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.496 μs (5%) 1.41 KiB (1%) 20
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.493 μs (5%) 7.78 KiB (1%) 33
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.756 μs (5%) 4.55 KiB (1%) 27
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 145.632 μs (5%) 91.03 KiB (1%) 1915
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.205 μs (5%) 29.28 KiB (1%) 714
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.223 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.163 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.741 μs (5%) 1.56 KiB (1%) 28
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.710 μs (5%) 1.56 KiB (1%) 28
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.959 μs (5%) 1.80 KiB (1%) 33
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.909 μs (5%) 1.80 KiB (1%) 33
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 25.377 μs (5%) 13.61 KiB (1%) 296
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.957 μs (5%) 8.39 KiB (1%) 187
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.359 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.096 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 9.167 μs (5%) 6.95 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 9.067 μs (5%) 6.95 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 10.350 μs (5%) 7.47 KiB (1%) 133
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.189 μs (5%) 7.47 KiB (1%) 133
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 68.347 μs (5%) 53.45 KiB (1%) 1117
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.527 μs (5%) 48.23 KiB (1%) 1008
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.266 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.063 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 5.639 μs (5%) 9.33 KiB (1%) 93
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 5.231 μs (5%) 8.08 KiB (1%) 85
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.126 μs (5%) 17.19 KiB (1%) 101
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 6.606 μs (5%) 15.94 KiB (1%) 93
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 98.534 μs (5%) 65.42 KiB (1%) 1277
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 80.029 μs (5%) 58.95 KiB (1%) 1160
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.234 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.069 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.471 μs (5%) 2.67 KiB (1%) 33
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 959.158 ns (5%) 1.11 KiB (1%) 23
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.983 μs (5%) 3.56 KiB (1%) 39
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.417 μs (5%) 2.00 KiB (1%) 29
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 31.298 μs (5%) 24.75 KiB (1%) 491
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.806 μs (5%) 17.30 KiB (1%) 353
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.380 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.119 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 455.242 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 419.685 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 577.114 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 533.042 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 25.739 μs (5%) 19.06 KiB (1%) 419
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.750 μs (5%) 13.17 KiB (1%) 291
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.068 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.801 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()", "linked"] 1.124 ms (5%) 263.19 KiB (1%) 3852
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()", "standard"] 1.022 ms (5%) 247.95 KiB (1%) 3415
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.864 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.708 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.672 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.502 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.818 μs (5%) 24.42 KiB (1%) 504
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.063 μs (5%) 18.22 KiB (1%) 374
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.396 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.100 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1023-azure #24~22.04.1-Ubuntu SMP Wed Jun 12 19:55:26 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      10034 s          0 s        703 s      20872 s          0 s
       #2  2590 MHz       8880 s          0 s        659 s      22068 s          0 s
       #3  2445 MHz       9170 s          0 s        714 s      21723 s          0 s
       #4  3243 MHz      10832 s          0 s        695 s      20096 s          0 s
  Memory: 15.606487274169922 GB (12930.19921875 MB free)
  Uptime: 3169.46 sec
  Load Avg:  1.05  1.03  1.05
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 11 Jul 2024 - 22:35
  • Package commit: 929eee
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.084 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 313.066 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 313.960 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 451.505 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 452.662 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.758 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.788 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 580.643 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 591.158 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "linked"] 189.644 μs (5%) 91.09 KiB (1%) 791
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()", "standard"] 186.829 μs (5%) 91.06 KiB (1%) 791
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 216.510 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 218.723 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 332.392 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 334.342 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.618 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.578 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 579.324 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 583.961 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "linked"] 180.126 μs (5%) 89.31 KiB (1%) 768
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()", "standard"] 175.908 μs (5%) 89.28 KiB (1%) 768
["EpiLatentModels", "AR", "evaluation", "linked"] 1.545 μs (5%) 2.66 KiB (1%) 31
["EpiLatentModels", "AR", "evaluation", "standard"] 1.176 μs (5%) 1.61 KiB (1%) 24
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.849 μs (5%) 7.92 KiB (1%) 41
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.555 μs (5%) 6.36 KiB (1%) 32
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 96.490 μs (5%) 51.12 KiB (1%) 1038
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 57.347 μs (5%) 39.83 KiB (1%) 779
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.194 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.599 μs (5%) 2.44 KiB (1%) 38
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.427 μs (5%) 2.73 KiB (1%) 29
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.214 μs (5%) 1.86 KiB (1%) 25
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.949 μs (5%) 5.41 KiB (1%) 36
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.816 μs (5%) 4.53 KiB (1%) 32
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.727 μs (5%) 25.11 KiB (1%) 450
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.693 μs (5%) 19.17 KiB (1%) 341
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.382 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.246 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 68.097 μs (5%) 54.75 KiB (1%) 626
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 63.980 μs (5%) 40.17 KiB (1%) 582
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 141.856 μs (5%) 133.47 KiB (1%) 1276
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 138.078 μs (5%) 103.59 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 201.266 μs (5%) 107.70 KiB (1%) 1700
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 153.006 μs (5%) 82.88 KiB (1%) 1404
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.713 μs (5%) 480 bytes (1%) 4
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.023 μs (5%) 2.72 KiB (1%) 40
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 18.485 μs (5%) 33.77 KiB (1%) 281
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 15.449 μs (5%) 25.33 KiB (1%) 251
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 20.588 μs (5%) 48.22 KiB (1%) 301
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 17.152 μs (5%) 39.78 KiB (1%) 271
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 112.330 μs (5%) 64.69 KiB (1%) 908
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 92.793 μs (5%) 51.42 KiB (1%) 779
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.007 μs (5%) 2.66 KiB (1%) 78
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.839 μs (5%) 2.66 KiB (1%) 78
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.672 μs (5%) 3.62 KiB (1%) 32
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.272 μs (5%) 1.94 KiB (1%) 26
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.907 μs (5%) 10.08 KiB (1%) 40
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 3.150 μs (5%) 8.39 KiB (1%) 34
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 75.481 μs (5%) 43.53 KiB (1%) 866
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 52.969 μs (5%) 37.25 KiB (1%) 767
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.976 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.046 μs (5%) 1.28 KiB (1%) 27
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 390.684 ns (5%) 736 bytes (1%) 6
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 326.252 ns (5%) 576 bytes (1%) 5
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.164 μs (5%) 4.08 KiB (1%) 12
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 846.718 ns (5%) 3.92 KiB (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 54.872 μs (5%) 26.75 KiB (1%) 528
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.747 μs (5%) 21.38 KiB (1%) 418
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.948 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.730 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "linked"] 439.361 μs (5%) 242.48 KiB (1%) 1735
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()", "standard"] 364.972 μs (5%) 228.31 KiB (1%) 1363
["EpiLatentModels", "Intercept", "evaluation", "linked"] 245.686 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 246.554 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 354.853 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 355.963 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.407 μs (5%) 3.48 KiB (1%) 75
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.451 μs (5%) 3.48 KiB (1%) 75
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 490.041 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 489.268 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "linked"] 305.010 μs (5%) 102.61 KiB (1%) 1022
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()", "standard"] 304.559 μs (5%) 102.58 KiB (1%) 1022
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.932 μs (5%) 3.31 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.750 μs (5%) 2.84 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.695 μs (5%) 7.23 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.654 μs (5%) 6.77 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.331 μs (5%) 29.19 KiB (1%) 551
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 38.863 μs (5%) 23.50 KiB (1%) 439
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.934 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.722 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 734.550 ns (5%) 1.23 KiB (1%) 13
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 622.368 ns (5%) 816 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.529 μs (5%) 5.00 KiB (1%) 20
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.353 μs (5%) 4.56 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.532 μs (5%) 30.53 KiB (1%) 613
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 33.002 μs (5%) 25.66 KiB (1%) 522
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.565 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.673 μs (5%) 192 bytes (1%) 2
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 326.589 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 329.262 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 410.865 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 424.462 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.702 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.757 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 562.508 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 558.194 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "linked"] 261.429 μs (5%) 107.71 KiB (1%) 1039
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()", "standard"] 253.584 μs (5%) 107.68 KiB (1%) 1039
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.902 μs (5%) 3.61 KiB (1%) 39
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.606 μs (5%) 2.30 KiB (1%) 33
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.809 μs (5%) 8.55 KiB (1%) 46
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.800 μs (5%) 7.23 KiB (1%) 40
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 61.505 μs (5%) 37.14 KiB (1%) 738
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.601 μs (5%) 32.27 KiB (1%) 666
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.466 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.847 μs (5%) 160 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.092 μs (5%) 4.14 KiB (1%) 41
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.515 μs (5%) 2.25 KiB (1%) 31
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.815 μs (5%) 7.22 KiB (1%) 51
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.433 μs (5%) 5.06 KiB (1%) 39
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 90.579 μs (5%) 40.66 KiB (1%) 725
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 50.545 μs (5%) 27.52 KiB (1%) 471
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.071 μs (5%) 128 bytes (1%) 2
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.646 μs (5%) 384 bytes (1%) 6
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 4.470 μs (5%) 4.30 KiB (1%) 72
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 4.448 μs (5%) 4.30 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.340 μs (5%) 4.72 KiB (1%) 79
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.325 μs (5%) 4.72 KiB (1%) 79
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 55.563 μs (5%) 42.55 KiB (1%) 990
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.737 μs (5%) 37.33 KiB (1%) 881
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.885 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.766 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 139.721 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 140.773 μs (5%) 547.22 KiB (1%) 1195
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 137.807 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 139.130 μs (5%) 549.45 KiB (1%) 1101
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 680.581 μs (5%) 889.12 KiB (1%) 9453
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 647.690 μs (5%) 883.91 KiB (1%) 9344
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 64.790 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 61.485 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.198 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.178 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.859 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.782 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.890 μs (5%) 39.16 KiB (1%) 963
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.298 μs (5%) 33.94 KiB (1%) 854
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.689 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.574 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoZygote()", "linked"] 1.458 ms (5%) 393.78 KiB (1%) 6236
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoZygote()", "standard"] 1.380 ms (5%) 382.22 KiB (1%) 5872
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.907 μs (5%) 1.83 KiB (1%) 24
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.576 μs (5%) 1.41 KiB (1%) 20
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.328 μs (5%) 7.78 KiB (1%) 33
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.599 μs (5%) 4.55 KiB (1%) 27
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 145.883 μs (5%) 91.03 KiB (1%) 1915
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.112 μs (5%) 29.28 KiB (1%) 714
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.362 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.244 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.713 μs (5%) 1.56 KiB (1%) 28
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.702 μs (5%) 1.56 KiB (1%) 28
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.976 μs (5%) 1.80 KiB (1%) 33
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.957 μs (5%) 1.80 KiB (1%) 33
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 25.848 μs (5%) 13.61 KiB (1%) 296
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.087 μs (5%) 8.39 KiB (1%) 187
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 719.300 ns (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 522.000 ns (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 14.778 μs (5%) 6.95 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 14.447 μs (5%) 6.95 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 9.268 μs (5%) 7.47 KiB (1%) 133
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 9.207 μs (5%) 7.47 KiB (1%) 133
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 66.714 μs (5%) 53.45 KiB (1%) 1117
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 44.233 μs (5%) 48.23 KiB (1%) 1008
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.446 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.270 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 5.751 μs (5%) 9.33 KiB (1%) 93
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 5.278 μs (5%) 8.08 KiB (1%) 85
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.481 μs (5%) 17.19 KiB (1%) 101
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 6.690 μs (5%) 15.94 KiB (1%) 93
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 99.917 μs (5%) 65.42 KiB (1%) 1277
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 76.743 μs (5%) 58.95 KiB (1%) 1160
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.242 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.031 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.480 μs (5%) 2.67 KiB (1%) 33
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 957.579 ns (5%) 1.11 KiB (1%) 23
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.053 μs (5%) 3.56 KiB (1%) 39
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.447 μs (5%) 2.00 KiB (1%) 29
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 31.178 μs (5%) 24.75 KiB (1%) 491
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.655 μs (5%) 17.30 KiB (1%) 353
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.332 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.075 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 445.682 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 417.830 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 578.310 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 536.368 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 26.490 μs (5%) 19.06 KiB (1%) 419
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 11.101 μs (5%) 13.17 KiB (1%) 291
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.997 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.698 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()", "linked"] 1.024 ms (5%) 263.19 KiB (1%) 3852
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()", "standard"] 942.340 μs (5%) 247.95 KiB (1%) 3415
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.819 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.677 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.710 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.532 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.898 μs (5%) 24.42 KiB (1%) 504
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.434 μs (5%) 18.22 KiB (1%) 374
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.314 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.073 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoZygote()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1023-azure #24~22.04.1-Ubuntu SMP Wed Jun 12 19:55:26 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz      12481 s          0 s        928 s      31604 s          0 s
       #2  3244 MHz      11075 s          0 s        865 s      33073 s          0 s
       #3  2586 MHz      13468 s          0 s        928 s      30624 s          0 s
       #4  2445 MHz      14968 s          0 s        913 s      29149 s          0 s
  Memory: 15.606487274169922 GB (12420.01953125 MB free)
  Uptime: 4512.52 sec
  Load Avg:  1.08  1.04  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.87
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@seabbs seabbs closed this Jul 12, 2024
@seabbs seabbs deleted the test-benchmaks branch July 12, 2024 15:08
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants