Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix: figure 1 script #555

Merged
merged 3 commits into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 26 additions & 29 deletions pipeline/scripts/create_figure1.jl
Original file line number Diff line number Diff line change
@@ -1,23 +1,14 @@
## Script to make figure 1 and alternate latent models for SI
using Pkg
Pkg.activate(joinpath(@__DIR__(), ".."))
using EpiAwarePipeline, EpiAware, AlgebraOfGraphics, JLD2, DrWatson, DataFramesMeta,
Statistics, Distributions, CSV, CairoMakie

using EpiAwarePipeline, EpiAware, AlgebraOfGraphics, JLD2, DrWatson, Plots, DataFramesMeta,
Statistics, Distributions, CSV

##
pipelines = [
SmoothOutbreakPipeline(), MeasuresOutbreakPipeline(),
SmoothEndemicPipeline(), RoughEndemicPipeline()]
## Define scenarios and targets
scenarios = ["measures_outbreak", "smooth_outbreak", "smooth_endemic", "rough_endemic"]
targets = ["log_I_t", "rt", "Rt"]
gi_means = [2.0, 10.0, 20.0]

## load some data and create a dataframe for the plot
truth_data_files = readdir(datadir("truth_data")) |>
strs -> filter(s -> occursin("jld2", s), strs)
analysis_df = CSV.File(plotsdir("analysis_df.csv")) |> DataFrame
truth_df = mapreduce(vcat, truth_data_files) do filename
D = load(joinpath(datadir("truth_data"), filename))
make_truthdata_dataframe(filename, D, pipelines)
end
truth_data_df = CSV.File(plotsdir("plotting_data/truthdata.csv")) |> DataFrame
prediction_df = CSV.File(plotsdir("plotting_data/predictions.csv")) |> DataFrame

# Define scenario titles and reference times for figure 1
scenario_dict = Dict(
Expand All @@ -28,21 +19,27 @@ scenario_dict = Dict(
)

target_dict = Dict(
"log_I_t" => (title = "log(Incidence)", ylims = (3.5, 6)),
"rt" => (title = "Exp. growth rate", ylims = (-0.1, 0.1)),
"Rt" => (title = "Reproductive number", ylims = (-0.1, 3))
"log_I_t" => (title = "log(Incidence)",),
"rt" => (title = "Exp. growth rate",),
"Rt" => (title = "Reproductive number",)
)

latent_model_dict = Dict(
"wkly_rw" => (title = "Random walk",),
"wkly_ar" => (title = "AR(1)",),
"wkly_diff_ar" => (title = "Diff. AR(1)",)
"rw" => (title = "Random walk",),
"ar" => (title = "AR(1)",),
"diff_ar" => (title = "Diff. AR(1)",)
)

## `wkly_ar` is the default latent model which we show as figure 1, others are for SI

_ = map(latent_model_dict |> keys |> collect) do latent_model
fig = figureone(
truth_df, analysis_df, latent_model, scenario_dict, target_dict, latent_model_dict)
save(plotsdir("figure1_$(latent_model).png"), fig)
## `ar` is the default latent model which we show as figure 1, others are for SI

_ = mapreduce(vcat, latent_model_dict |> keys |> collect) do latent_model
map(Iterators.product(gi_means, gi_means)) do (true_gi_choice, used_gi_choice)
fig = figureone(
prediction_df, truth_data_df, scenarios, targets; scenario_dict, target_dict,
latent_model_dict, latent_model, true_gi_choice, used_gi_choice)
# save(plotsdir("figure1_$(latent_model).png"), fig)
save(
plotsdir("figure1_$(latent_model)_trueGI_$(true_gi_choice)_usedGI_$(used_gi_choice).png"),
fig)
end
end
2 changes: 1 addition & 1 deletion pipeline/scripts/create_prediction_dataframe.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ dfs = mapreduce(vcat, scenarios) do scenario
mapreduce(vcat, files) do filename
output = load(joinpath(datadir("epiaware_observables"), scenario, filename))
try
make_prediction_dataframe_from_output(output, true_gi_mean)
make_prediction_dataframe_from_output(output, true_gi_mean, scenario)
catch e
@warn "Error in $filename"
push!(failed_configs, output["inference_config"])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,13 @@ A dataframe containing the prediction results.

"""
function make_prediction_dataframe_from_output(
output, true_mean_gi; qs = [0.025, 0.25, 0.5, 0.75, 0.975],
output, true_mean_gi, scenario; qs = [0.025, 0.25, 0.5, 0.75, 0.975],
transformation = oneexpy)
#Unpack the output
inference_config = output["inference_config"]
forecasts = output["forecast_results"]
#Get the scenario, IGP model, latent model and true mean GI
igp_model = inference_config["igp"] |> igp_name -> split(igp_name, ".")[end]
scenario = inference_config["scenario"]
latent_model = inference_config["latent_model"]
used_gi_mean = inference_config["gi_mean"]
used_gi_std = inference_config["gi_std"]
Expand Down
Loading
Loading