Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2024-12-08 update : changing center of prior. #260

Merged
merged 3 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions inst/extdata/example_params.toml
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@ uot = 50

[infection_process]
# spatial params
log_phi_mu_prior = -1.386294 # log(0.25)
log_phi_sd_prior = 0.75
log_phi_mu_prior = 0 # log(1)
log_phi_sd_prior = 0.4
l = 1
log_sigma_generalized_mu_prior = -5.298317 # log(0.05^4)
log_sigma_generalized_sd_prior = 0.5
Expand Down
329 changes: 329 additions & 0 deletions scratch/phi_prior_investig.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,329 @@
## Investigating if prior is identifiable / effect of changing prior
# Library
library(wwinference)
library(tidyverse)
library(patchwork)


## Presets - Data Generation
set.seed(2024)
n_sites <- 4
fake_locs <- data.frame(
x = runif(n_sites, 0, 100),
y = runif(n_sites, 0, 100),
ID = paste0("Site ", 1:n_sites)
)
r_in_weeks <- c(
rep(1.1, 5), rep(0.9, 5),
0.9 + 0.0005 * (1:16)^2
)
site <- 1:n_sites
lab <- rep(1, n_sites)
ww_pop_sites <- c(5e5, 7.5e5, 3.8e5, 4.5e5)
pop_size <- 2 * sum(ww_pop_sites)
global_rt_sd <- 0
exp_corr_param <- list(
dist_matrix = as.matrix(
dist(
data.frame(
x = fake_locs$x,
y = fake_locs$y
),
diag = TRUE,
upper = TRUE
)
),
phi = 1.5,
l = 1
)
sigma_sqrd_generalized <- 0.01^n_sites

# Data Generation - Exponential
simulated_data <- withr::with_seed(1, {
wwinference::generate_simulated_data(
r_in_weeks = r_in_weeks, # nolint
n_sites = n_sites,
site = site,
lab = lab,
ww_pop_sites = ww_pop_sites,
pop_size = pop_size,
global_rt_sd = global_rt_sd,
use_spatial_corr = TRUE,
corr_function = exponential_decay_corr_func_r,
corr_fun_params = exp_corr_param,
sigma_sqrd_generalized = sigma_sqrd_generalized,
aux_site_bool = TRUE
)
})
hosp_data_preprocessed <- wwinference::preprocess_count_data(
simulated_data$hosp_data,
count_col_name = "daily_hosp_admits",
pop_size_col_name = "state_pop"
)
ww_data_preprocessed <- wwinference::preprocess_ww_data(
simulated_data$ww_data
)
ww_data_to_fit <- wwinference::indicate_ww_exclusions(
ww_data_preprocessed,
outlier_col_name = "flag_as_ww_outlier",
remove_outliers = TRUE
)


## Presets - Fit
params_new <- get_params(
system.file("extdata", "example_params.toml",
package = "wwinference"
)
)
cat("New Log Phi Mean :", params_new$log_phi_mu_prior, "\n")
params_old <- params_new
params_old$log_phi_mu_prior <- log(0.25)
params_old$log_phi_sd_prior <- 0.75
cat("Old Log Phi Mean :", params_old$log_phi_mu_prior, "\n")
forecast_date <- "2023-12-06"
calibration_time <- 90
forecast_horizon <- 28

generation_interval <- wwinference::default_covid_gi
inf_to_hosp <- wwinference::default_covid_inf_to_hosp

# Assign infection feedback equal to the generation interval
infection_feedback_pmf <- generation_interval

model <- wwinference::compile_model()

iter_warmup <- 250
iter_sampling <- 500
fit_options <- get_mcmc_options(
iter_warmup = iter_warmup,
iter_sampling = iter_sampling,
seed = 123
)


## Fitting
fit_old <- wwinference::wwinference(
ww_data = ww_data_to_fit,
count_data = hosp_data_preprocessed,
forecast_date = forecast_date,
calibration_time = calibration_time,
forecast_horizon = forecast_horizon,
model_spec = get_model_spec(
generation_interval = generation_interval,
inf_to_count_delay = inf_to_hosp,
infection_feedback_pmf = infection_feedback_pmf,
params = params_old
),
fit_opts = fit_options,
compiled_model = model,
dist_matrix = as.matrix(exp_corr_param$dist_matrix),
corr_structure_switch = 1
)
phi_draws_old <- fit_old$fit$result$draws(
variables = "phi",
format = "draws_array"
)
phi_draws_old <- phi_draws_old %>%
as.data.frame() %>%
pivot_longer(
everything(),
names_to = "chain",
values_to = "phi"
) %>%
mutate(
chain = case_when(
chain == "1.phi" ~ 1,
chain == "2.phi" ~ 2,
chain == "3.phi" ~ 3,
chain == "4.phi" ~ 4
),
chain = factor(chain)
)

fit_new <- wwinference::wwinference(
ww_data = ww_data_to_fit,
count_data = hosp_data_preprocessed,
forecast_date = forecast_date,
calibration_time = calibration_time,
forecast_horizon = forecast_horizon,
model_spec = get_model_spec(
generation_interval = generation_interval,
inf_to_count_delay = inf_to_hosp,
infection_feedback_pmf = infection_feedback_pmf,
params = params_new
),
fit_opts = fit_options,
compiled_model = model,
dist_matrix = as.matrix(exp_corr_param$dist_matrix),
corr_structure_switch = 1
)
phi_draws_new <- fit_new$fit$result$draws(
variables = "phi",
format = "draws_array"
)
phi_draws_new <- phi_draws_new %>%
as.data.frame() %>%
pivot_longer(
everything(),
names_to = "chain",
values_to = "phi"
) %>%
mutate(
chain = case_when(
chain == "1.phi" ~ 1,
chain == "2.phi" ~ 2,
chain == "3.phi" ~ 3,
chain == "4.phi" ~ 4
),
chain = factor(chain)
)



## Visualizing Fits
# Trace Plots
phi_trace_new_plot <- ggplot(phi_draws_new) +
geom_line(
aes(
y = phi,
x = seq_along(phi),
colour = chain
)
) +
labs(
title = "Trace Plot for Phi Draws w/ New Prior",
x = "iter",
y = "phi",
colour = "Chain"
) +
scale_color_manual(
values = c("gold", "darkred", "darkgreen", "darkblue")
) +
theme_bw()
phi_trace_old_plot <- ggplot(phi_draws_old) +
geom_line(
aes(
y = phi,
x = seq_along(phi),
colour = chain
)
) +
labs(
title = "Trace Plot for Phi Draws w/ Old Prior",
x = "iter",
y = "phi",
colour = "Chain"
) +
scale_color_manual(
values = c("gold", "darkred", "darkgreen", "darkblue")
) +
theme_bw()

phi_trace_old_plot / phi_trace_new_plot +
plot_layout(
guides = "collect"
)

# Prior and Posterior
prior_old <- exp(rnorm(
n = 1000,
mean = params_old$log_phi_mu_prior,
sd = params_old$log_phi_sd_prior
))
prior_new <- exp(rnorm(
n = 1000,
mean = params_new$log_phi_mu_prior,
sd = params_new$log_phi_sd_prior
))

prior_post_old_plot <- ggplot() +
geom_vline(
xintercept = exp_corr_param$phi,
linetype = "dashed"
) +
geom_density(
aes(
x = prior_old,
fill = "Prior",
colour = "Prior"
),
alpha = .25
) +
geom_density(
data = phi_draws_old %>%
filter(
chain == 1
),
aes(
x = phi,
fill = "Posterior",
colour = "Posterior"
),
alpha = .25
) +
scale_color_manual(
breaks = c("Prior", "Posterior"),
values = c("dodgerblue", "purple")
) +
scale_fill_manual(
breaks = c("Prior", "Posterior"),
values = c("dodgerblue", "purple")
) +
labs(
title = "Prior & Posterior w/ Old Prior",
subtitle = "Vertical Dashed Line Actual",
fill = "Dist. Type",
colour = "Dist. Type",
y = "Density",
x = "Value"
) +
theme_bw()

prior_post_new_plot <- ggplot() +
geom_vline(
xintercept = exp_corr_param$phi,
linetype = "dashed"
) +
geom_density(
aes(
x = prior_new,
fill = "Prior",
colour = "Prior"
),
alpha = .25
) +
geom_density(
data = phi_draws_new %>%
filter(
chain == 1
),
aes(
x = phi,
fill = "Posterior",
colour = "Posterior"
),
alpha = .25
) +
scale_color_manual(
breaks = c("Prior", "Posterior"),
values = c("dodgerblue", "purple")
) +
scale_fill_manual(
breaks = c("Prior", "Posterior"),
values = c("dodgerblue", "purple")
) +
labs(
title = "Prior & Posterior w/ New Prior",
subtitle = "Vertical Dashed Line Actual",
fill = "Dist. Type",
colour = "Dist. Type",
y = "Density",
x = "Value"
) +
theme_bw()

prior_post_old_plot / prior_post_new_plot +
plot_layout(
guides = "collect"
)
2 changes: 1 addition & 1 deletion vignettes/spatial_wwinference.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -243,7 +243,7 @@ exp_corr_param <- list(
upper = TRUE
)
),
phi = 0.4,
phi = 1.2,
l = 1
)
sigma_sqrd_generalized <- 0.01^n_sites
Expand Down
Loading