Skip to content

Commit

Permalink
Removed "funpow" for lambda terms, using FUNPOW (APP f) instead
Browse files Browse the repository at this point in the history
  • Loading branch information
binghe authored and mn200 committed Oct 16, 2023
1 parent b76277a commit 5f1d5f3
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 33 deletions.
13 changes: 7 additions & 6 deletions examples/lambda/barendregt/solvableScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -657,15 +657,16 @@ Proof
>> qabbrev_tac ‘n = LENGTH vs’
>> qabbrev_tac ‘m = LENGTH Ns’
>> Q.PAT_X_ASSUM ‘N = LAMl vs (VAR y @* Ns)’ (ONCE_REWRITE_TAC o wrap)
>> qabbrev_tac ‘Ms = GENLIST (\i. funpow K m I) n’
(* now we use arithmeticTheory.FUNPOW instead of locally defined one *)
>> qabbrev_tac ‘Ms = GENLIST (\i. FUNPOW (APP K) m I) n’
>> Q.EXISTS_TAC ‘Ms’
(* applying lameq_LAMl_appstar and ssub_appstar *)
>> MATCH_MP_TAC lameq_TRANS
>> Q.EXISTS_TAC ‘(FEMPTY |++ ZIP (vs,Ms)) ' (VAR y @* Ns)’
>> CONJ_TAC
>- (MATCH_MP_TAC lameq_LAMl_appstar >> art [] \\
CONJ_TAC >- rw [Abbr ‘Ms’] \\
rw [EVERY_EL, Abbr ‘Ms’, closed_def, FV_funpow])
rw [EVERY_EL, Abbr ‘Ms’, closed_def, FV_FUNPOW])
>> REWRITE_TAC [ssub_appstar]
>> Q.PAT_ASSUM ‘MEM y vs’ ((Q.X_CHOOSE_THEN ‘i’ STRIP_ASSUME_TAC) o
(REWRITE_RULE [MEM_EL]))
Expand All @@ -680,7 +681,7 @@ Proof
‘j <> i’ by rw [] \\
METIS_TAC [EL_ALL_DISTINCT_EL_EQ])
>> Rewr'
>> Know ‘EL i Ms = funpow K m I’
>> Know ‘EL i Ms = FUNPOW (APP K) m I’
>- (‘i < n’ by rw [Abbr ‘n’] \\
rw [Abbr ‘Ms’, EL_GENLIST])
>> Rewr'
Expand All @@ -689,11 +690,11 @@ Proof
>> Know ‘LENGTH Ps = m’ >- (rw [Abbr ‘m’, Abbr ‘Ps’])
>> KILL_TAC
>> Q.ID_SPEC_TAC ‘Ps’
>> Induct_on ‘m’ >- ASM_SIMP_TAC (betafy(srw_ss())) [LENGTH_NIL, funpow_def]
>> rw [funpow_SUC]
>> Induct_on ‘m’ >- ASM_SIMP_TAC (betafy(srw_ss())) [LENGTH_NIL, FUNPOW]
>> rw [FUNPOW_SUC]
>> Cases_on ‘Ps’ >> fs []
>> MATCH_MP_TAC lameq_TRANS
>> Q.EXISTS_TAC ‘funpow K m I @* t’ >> rw []
>> Q.EXISTS_TAC ‘FUNPOW (APP K) m I @* t’ >> rw []
>> MATCH_MP_TAC lameq_appstar_cong >> rw [lameq_K]
QED

Expand Down
34 changes: 7 additions & 27 deletions examples/lambda/basics/appFOLDLScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,6 @@ open termTheory binderLib;

val _ = new_theory "appFOLDL"

val _ = set_trace "Unicode" 1

val _ = set_fixity "@*" (Infixl 901)
val _ = Unicode.unicode_version { u = "··", tmnm = "@*"}
val _ = overload_on ("@*", ``λf (args:term list). FOLDL APP f args``)
Expand Down Expand Up @@ -301,38 +299,20 @@ Proof
QED

(*---------------------------------------------------------------------------*
* funpow for lambda terms (cf. arithmeticTheory.FUNPOW)
* funpow for lambda terms (using arithmeticTheory.FUNPOW)
*---------------------------------------------------------------------------*)

Definition funpow :
funpow f n (x :term) =
if n = 0 then x else funpow f (n - 1) (f @@ x)
End

Theorem funpow_def :
(!f x. funpow f 0 x = x) /\
(!f n x. funpow f (SUC n) x = funpow f n (f @@ x))
Proof
NTAC 2 (rw [Once funpow])
QED

Theorem funpow_SUC :
!f n x. funpow f (SUC n) x = f @@ (funpow f n x)
Proof
Q.X_GEN_TAC ‘f’
>> Induct_on ‘n’ >> rw [funpow_def]
>> fs [funpow_def]
QED
Overload funpow = “\f. FUNPOW (APP (f :term))”

Theorem FV_funpow :
!f x n. FV (funpow f n x) = if n = 0 then FV x else FV f UNION FV x
Theorem FV_FUNPOW :
!(f :term) x n. FV (FUNPOW (APP f) n x) = if n = 0 then FV x else FV f UNION FV x
Proof
rpt STRIP_TAC
>> Q.SPEC_TAC (‘n’, ‘i’)
>> Cases_on ‘i’ >- rw [funpow_def]
>> Cases_on ‘i’ >- rw [FUNPOW]
>> simp []
>> Induct_on ‘n’ >- rw [funpow_def]
>> fs [funpow_SUC]
>> Induct_on ‘n’ >- rw [FUNPOW]
>> fs [FUNPOW_SUC]
>> SET_TAC []
QED

Expand Down

0 comments on commit 5f1d5f3

Please sign in to comment.