Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix nf in inverse matching #312

Merged
merged 5 commits into from
Oct 11, 2023
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions benchmarks/eko/benchmark_iveverse_matching.py
giacomomagni marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import pathlib

import numpy as np
import pytest
from banana import toy

from eko import EKO
from eko.io import runcards
from eko.io.types import ReferenceRunning
from eko.runner.managed import solve
from ekobox import apply

here = pathlib.Path(__file__).parent.absolute()
MC = 1.51
C_PID = 4

# theory settings
th_raw = dict(
order=[3, 0],
couplings=dict(
alphas=0.118,
alphaem=0.007496252,
scale=91.2,
num_flavs_ref=5,
max_num_flavs=6,
),
heavy=dict(
num_flavs_init=4,
num_flavs_max_pdf=6,
intrinsic_flavors=[],
masses=[ReferenceRunning([mq, np.nan]) for mq in (MC, 4.92, 172.5)],
masses_scheme="POLE",
matching_ratios=[1.0, 1.0, np.inf],
),
xif=1.0,
n3lo_ad_variation=(0, 0, 0, 0, 0, 0, 0),
matching_order=[2, 0],
)

# operator settings
op_raw = dict(
mu0=1.65,
xgrid=[0.0001, 0.001, 0.01, 0.1, 1],
mugrid=[(MC, 3), (MC, 4)],
configs=dict(
evolution_method="truncated",
ev_op_max_order=[1, 0],
ev_op_iterations=1,
interpolation_polynomial_degree=4,
interpolation_is_log=True,
scvar_method="exponentiated",
inversion_method="exact",
n_integration_cores=0,
polarized=False,
time_like=False,
),
debug=dict(
skip_singlet=False,
skip_non_singlet=False,
),
)


@pytest.mark.isolated
def benchmark_inverse_matching():
th_card = runcards.TheoryCard.from_dict(th_raw)
op_card = runcards.OperatorCard.from_dict(op_raw)

eko_path2 = here / "test2.tar"
eko_path2.unlink(missing_ok=True)
solve(th_card, op_card, eko_path2)

th_card.matching_order = [1, 0]
eko_path1 = here / "test1.tar"
eko_path1.unlink(missing_ok=True)
solve(th_card, op_card, eko_path1)

eko_output1 = EKO.read(eko_path1)
eko_output2 = EKO.read(eko_path2)
op1_nf3 = eko_output1[(MC**2, 3)]
op2_nf3 = eko_output2[(MC**2, 3)]
op1_nf4 = eko_output1[(MC**2, 4)]
op2_nf4 = eko_output2[(MC**2, 4)]

# test that nf=4 operators are the same
np.testing.assert_allclose(op1_nf4.operator, op2_nf4.operator)

with pytest.raises(AssertionError):
np.testing.assert_allclose(op2_nf3.operator, op2_nf4.operator)

with pytest.raises(AssertionError):
np.testing.assert_allclose(op1_nf3.operator, op1_nf4.operator)

with pytest.raises(AssertionError):
np.testing.assert_allclose(op1_nf3.operator, op2_nf3.operator)

pdf1 = apply.apply_pdf(eko_output1, toy.mkPDF("ToyLH", 0))
pdf2 = apply.apply_pdf(eko_output2, toy.mkPDF("ToyLH", 0))

# test that different PTO matching is applied correctly
np.testing.assert_allclose(
pdf1[(MC**2, 4)]["pdfs"][C_PID], pdf2[(MC**2, 4)]["pdfs"][C_PID]
)
with pytest.raises(AssertionError):
np.testing.assert_allclose(
pdf1[(MC**2, 3)]["pdfs"][C_PID], pdf2[(MC**2, 3)]["pdfs"][C_PID]
)
Loading