Skip to content

Commit

Permalink
Starting to do exercises on Elliptic Curves
Browse files Browse the repository at this point in the history
  • Loading branch information
ceciliachan1979 committed Nov 18, 2023
1 parent 8a28ce3 commit ec9c151
Show file tree
Hide file tree
Showing 4 changed files with 153 additions and 1 deletion.
2 changes: 2 additions & 0 deletions .github/workflows/blank.yml
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ jobs:
Misc/Recurrence/Recurrence.tex
Misc/pde/pde.tex
Misc/Ufd/Ufd.tex
Misc/Elliptic/Elliptic.tex
Papers/GK/GK.tex
- name: Compile Chinese LaTeX documents
uses: xu-cheng/latex-action@v2
Expand Down Expand Up @@ -52,3 +53,4 @@ jobs:
Ufd.pdf
GK.pdf
DifferentialForm.pdf
Elliptic.pdf
2 changes: 1 addition & 1 deletion MIT/Solutions/MIT.tex
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
\usepackage{mathrsfs}

\newcommand{\emptymacro}{} % Used to test against an empty macro
% \newcommand{\linearalgebra}{}
\newcommand{\linearalgebra}{}

\title{MIT Math Problems}
\author{Cecilia}
Expand Down
150 changes: 150 additions & 0 deletions Misc/Elliptic/Elliptic.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage[legalpaper, margin=0.5in]{geometry}
\usepackage[final]{pdfpages}

\title{Elliptic Curve Exercises}
\author{Cecilia Chan}

\begin{document}
\maketitle

\includepdf{Misc/Elliptic/MATH-5020-hw1-1.pdf}

\section*{Problem 1}
Consider:
\begin{eqnarray*}
a_0 + \sum\limits_{i = 1}^{n} a_i \left(\frac{s}{t}\right)^i &=& 0 \\
a_0 t^n + \sum\limits_{i = 1}^{n} a_i s^i t^{n-i} &=& 0 \\
a_0 t^n &=& - \sum\limits_{i = 1}^{n} a_i s^i t^{n-i}
\end{eqnarray*}
Note that every term of the right hand size is a multiple of $ s $, but $ \gcd(s^n, t) = \gcd(s, t) = 1 $, so $ a_0 $ is a multiple of $ s $.

Consider:
\begin{eqnarray*}
\sum\limits_{i = 0}^{n-1} a_i \left(\frac{s}{t}\right)^i + a_n \left(\frac{s}{t}\right)^n &=& 0 \\
\sum\limits_{i = 0}^{n-1} a_i s^i t^{n-i} + a_n s^n &=& 0 \\
a_n s^n &=& -\sum\limits_{i = 0}^{n-1} a_i s^i t^{n-i}
\end{eqnarray*}
Note that every term on the right hand side is a multiple of $ t $, but $ \gcd(s^n, t) = \gcd(s, t) = 1 $, so $ a_n $ is a multiple of $ t $.

\section*{Problem 2}
$ \Rightarrow $:

Suppose $ ax + by = c $ has integral solution $ (x, y) $, then $ \frac{a}{\gcd(a, b)} x + \frac{b}{\gcd(a, b)} y = \frac{c}{\gcd(a, b)} $. In this case, left hand side is an integer, so is the right hand side, and therefore $ c $ is a multiple of $ \gcd(a, b) $.

$ \Leftarrow $:

Suppose $ c $ is a multiple of $ \gcd(a, b) $, then $ c = k \gcd(a, b) $ for some integer $ k $. By Bezout's identity, there exists $ x_0, y_0 $ such that $ ax_0 + by_0 = \gcd(a, b) $. Then $ a(kx_0) + b(ky_0) = c $, and $ (kx_0, ky_0) $ is an integral solution to $ ax + by = c $.

\section*{Problem 3}
Let the number of rooster, hen and chicken be $ r, h, c $ respectively. Then we have:

\begin{eqnarray*}
r + h + c &=& 100 \\
5r + 3h + \frac{1}{3}c &=& 100
\end{eqnarray*}

To avoid fraction, we can have:
\begin{eqnarray*}
r + h + 3d &=& 100 \\
5r + 3h + d &=& 100
\end{eqnarray*}

Or in matrix form

\begin{eqnarray*}
A &=& \left(
\begin{array}{ccc}
1 & 1 & 3 \\
5 & 3 & 1
\end{array}\right) \\
b &=& \left(\begin{array}{c}
r \\
h \\
d
\end{array}\right) \\
b &=& \left(\begin{array}{c}
100 \\
100
\end{array}\right) \\
Ax &=& b
\end{eqnarray*}

Smith normal form allow us to write $ A = P^{-1} S Q^{-1} $ where $ P, Q $ are unimodular matrices, and $ S $ is a diagonal matrix.

\begin{eqnarray*}
P &=& \left(
\begin{array}{cc}
1 & 0 \\
5 & -1
\end{array}\right) \\
Q &=& \left(
\begin{array}{ccc}
1 & -1 & 4 \\
0 & 1 & -7 \\
0 & 0 & 1
\end{array}\right) \\
S &=& \left(
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
\end{array}\right) \\
\end{eqnarray*}

Now we can easily solve the system as follows:
\begin{eqnarray*}
Ax &=& b \\
P^{-1} S Q^{-1} x &=& b \\
S Q^{-1} x &=& P b \\
\left(
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
\end{array}\right) Q^{-1}x &=& \left(\begin{array}{c}
100 \\
400
\end{array}\right) \\
Q^{-1}x &=& \left(\begin{array}{c}
100 \\
200 \\
t
\end{array}\right) \\
x &=& Q \left(\begin{array}{c}
100 \\
200 \\
t
\end{array}\right) \\
x &=& \left(
\begin{array}{ccc}
1 & -1 & 4 \\
0 & 1 & -7 \\
0 & 0 & 1
\end{array}\right) \left(\begin{array}{c}
100 \\
200 \\
t
\end{array}\right) \\
\left(\begin{array}{c}
r \\
h \\
d
\end{array}\right) &=& \left(\begin{array}{c}
4t - 100 \\
-7t + 200 \\
t
\end{array}\right)
\end{eqnarray*}

All of these are number of animals, so it must be the case that they are non-negative. Therefore we have:
\begin{eqnarray*}
4t - 100 &\geq& 0 \\
t &\geq& 25 \\
-7t + 200 &\geq& 0 \\
t &\leq& \frac{200}{7} \\
t &\leq& 28 \\
\end{eqnarray*}

So the answer is obvious, $ t $ can only be $ 25, 26, 27, 28 $, and the corresponding number of rooster, hen and chicken are $ 0, 25, 75 $, $ 4, 18, 78 $, $ 8, 11, 81 $, $ 12, 4, 84 $ respectively.

\end{document}
Binary file added Misc/Elliptic/MATH-5020-hw1-1.pdf
Binary file not shown.

0 comments on commit ec9c151

Please sign in to comment.