-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Starting to do exercises on Elliptic Curves
- Loading branch information
1 parent
8a28ce3
commit ec9c151
Showing
4 changed files
with
153 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
\documentclass{article} | ||
\usepackage{amsmath} | ||
\usepackage[legalpaper, margin=0.5in]{geometry} | ||
\usepackage[final]{pdfpages} | ||
|
||
\title{Elliptic Curve Exercises} | ||
\author{Cecilia Chan} | ||
|
||
\begin{document} | ||
\maketitle | ||
|
||
\includepdf{Misc/Elliptic/MATH-5020-hw1-1.pdf} | ||
|
||
\section*{Problem 1} | ||
Consider: | ||
\begin{eqnarray*} | ||
a_0 + \sum\limits_{i = 1}^{n} a_i \left(\frac{s}{t}\right)^i &=& 0 \\ | ||
a_0 t^n + \sum\limits_{i = 1}^{n} a_i s^i t^{n-i} &=& 0 \\ | ||
a_0 t^n &=& - \sum\limits_{i = 1}^{n} a_i s^i t^{n-i} | ||
\end{eqnarray*} | ||
Note that every term of the right hand size is a multiple of $ s $, but $ \gcd(s^n, t) = \gcd(s, t) = 1 $, so $ a_0 $ is a multiple of $ s $. | ||
|
||
Consider: | ||
\begin{eqnarray*} | ||
\sum\limits_{i = 0}^{n-1} a_i \left(\frac{s}{t}\right)^i + a_n \left(\frac{s}{t}\right)^n &=& 0 \\ | ||
\sum\limits_{i = 0}^{n-1} a_i s^i t^{n-i} + a_n s^n &=& 0 \\ | ||
a_n s^n &=& -\sum\limits_{i = 0}^{n-1} a_i s^i t^{n-i} | ||
\end{eqnarray*} | ||
Note that every term on the right hand side is a multiple of $ t $, but $ \gcd(s^n, t) = \gcd(s, t) = 1 $, so $ a_n $ is a multiple of $ t $. | ||
|
||
\section*{Problem 2} | ||
$ \Rightarrow $: | ||
|
||
Suppose $ ax + by = c $ has integral solution $ (x, y) $, then $ \frac{a}{\gcd(a, b)} x + \frac{b}{\gcd(a, b)} y = \frac{c}{\gcd(a, b)} $. In this case, left hand side is an integer, so is the right hand side, and therefore $ c $ is a multiple of $ \gcd(a, b) $. | ||
|
||
$ \Leftarrow $: | ||
|
||
Suppose $ c $ is a multiple of $ \gcd(a, b) $, then $ c = k \gcd(a, b) $ for some integer $ k $. By Bezout's identity, there exists $ x_0, y_0 $ such that $ ax_0 + by_0 = \gcd(a, b) $. Then $ a(kx_0) + b(ky_0) = c $, and $ (kx_0, ky_0) $ is an integral solution to $ ax + by = c $. | ||
|
||
\section*{Problem 3} | ||
Let the number of rooster, hen and chicken be $ r, h, c $ respectively. Then we have: | ||
|
||
\begin{eqnarray*} | ||
r + h + c &=& 100 \\ | ||
5r + 3h + \frac{1}{3}c &=& 100 | ||
\end{eqnarray*} | ||
|
||
To avoid fraction, we can have: | ||
\begin{eqnarray*} | ||
r + h + 3d &=& 100 \\ | ||
5r + 3h + d &=& 100 | ||
\end{eqnarray*} | ||
|
||
Or in matrix form | ||
|
||
\begin{eqnarray*} | ||
A &=& \left( | ||
\begin{array}{ccc} | ||
1 & 1 & 3 \\ | ||
5 & 3 & 1 | ||
\end{array}\right) \\ | ||
b &=& \left(\begin{array}{c} | ||
r \\ | ||
h \\ | ||
d | ||
\end{array}\right) \\ | ||
b &=& \left(\begin{array}{c} | ||
100 \\ | ||
100 | ||
\end{array}\right) \\ | ||
Ax &=& b | ||
\end{eqnarray*} | ||
|
||
Smith normal form allow us to write $ A = P^{-1} S Q^{-1} $ where $ P, Q $ are unimodular matrices, and $ S $ is a diagonal matrix. | ||
|
||
\begin{eqnarray*} | ||
P &=& \left( | ||
\begin{array}{cc} | ||
1 & 0 \\ | ||
5 & -1 | ||
\end{array}\right) \\ | ||
Q &=& \left( | ||
\begin{array}{ccc} | ||
1 & -1 & 4 \\ | ||
0 & 1 & -7 \\ | ||
0 & 0 & 1 | ||
\end{array}\right) \\ | ||
S &=& \left( | ||
\begin{array}{ccc} | ||
1 & 0 & 0 \\ | ||
0 & 2 & 0 \\ | ||
\end{array}\right) \\ | ||
\end{eqnarray*} | ||
|
||
Now we can easily solve the system as follows: | ||
\begin{eqnarray*} | ||
Ax &=& b \\ | ||
P^{-1} S Q^{-1} x &=& b \\ | ||
S Q^{-1} x &=& P b \\ | ||
\left( | ||
\begin{array}{ccc} | ||
1 & 0 & 0 \\ | ||
0 & 2 & 0 \\ | ||
\end{array}\right) Q^{-1}x &=& \left(\begin{array}{c} | ||
100 \\ | ||
400 | ||
\end{array}\right) \\ | ||
Q^{-1}x &=& \left(\begin{array}{c} | ||
100 \\ | ||
200 \\ | ||
t | ||
\end{array}\right) \\ | ||
x &=& Q \left(\begin{array}{c} | ||
100 \\ | ||
200 \\ | ||
t | ||
\end{array}\right) \\ | ||
x &=& \left( | ||
\begin{array}{ccc} | ||
1 & -1 & 4 \\ | ||
0 & 1 & -7 \\ | ||
0 & 0 & 1 | ||
\end{array}\right) \left(\begin{array}{c} | ||
100 \\ | ||
200 \\ | ||
t | ||
\end{array}\right) \\ | ||
\left(\begin{array}{c} | ||
r \\ | ||
h \\ | ||
d | ||
\end{array}\right) &=& \left(\begin{array}{c} | ||
4t - 100 \\ | ||
-7t + 200 \\ | ||
t | ||
\end{array}\right) | ||
\end{eqnarray*} | ||
|
||
All of these are number of animals, so it must be the case that they are non-negative. Therefore we have: | ||
\begin{eqnarray*} | ||
4t - 100 &\geq& 0 \\ | ||
t &\geq& 25 \\ | ||
-7t + 200 &\geq& 0 \\ | ||
t &\leq& \frac{200}{7} \\ | ||
t &\leq& 28 \\ | ||
\end{eqnarray*} | ||
|
||
So the answer is obvious, $ t $ can only be $ 25, 26, 27, 28 $, and the corresponding number of rooster, hen and chicken are $ 0, 25, 75 $, $ 4, 18, 78 $, $ 8, 11, 81 $, $ 12, 4, 84 $ respectively. | ||
|
||
\end{document} |
Binary file not shown.