Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Run inference on the same device as used in the Trainer #121

Merged
merged 7 commits into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion luxonis_train/attached_modules/base_attached_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -327,7 +327,7 @@ def prepare(
set(self.supported_tasks) & set(self.node_tasks)
)
x = self.get_input_tensors(inputs)
if labels is None:
if labels is None or len(labels) == 0:
return x, None # type: ignore
label, task_type = self._get_label(labels)
if task_type in [TaskType.CLASSIFICATION, TaskType.SEGMENTATION]:
Expand Down
132 changes: 85 additions & 47 deletions luxonis_train/core/utils/infer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,13 @@
import cv2
import numpy as np
import torch
import torch.utils.data as torch_data
from luxonis_ml.data import LuxonisDataset
from torch import Tensor

import luxonis_train
from luxonis_train.attached_modules.visualizers import get_denormalized_images
from luxonis_train.loaders import LuxonisLoaderTorch

IMAGE_FORMATS = {
".bmp",
Expand Down Expand Up @@ -122,6 +125,61 @@
writer.release()


def infer_from_loader(
model: "luxonis_train.core.LuxonisModel",
loader: torch_data.DataLoader,
save_dir: Path | None,
img_paths: list[Path] | None = None,
) -> None:
"""Runs inference on images from the dataset.

@type model: L{LuxonisModel}
@param model: The model to use for inference.
@type loader: torch_data.DataLoader
@param loader: The loader to use for inference.
@type save_dir: str | Path | None
@param save_dir: The directory to save the visualizations to.
@type img_paths: list[Path] | None
@param img_paths: The paths to the images.
"""

predictions = model.pl_trainer.predict(model.lightning_module, loader)

broken = False
if predictions is None:
return

Check warning on line 150 in luxonis_train/core/utils/infer_utils.py

View check run for this annotation

Codecov / codecov/patch

luxonis_train/core/utils/infer_utils.py#L150

Added line #L150 was not covered by tests

for i, outputs in enumerate(predictions):
if broken: # pragma: no cover
break
visualizations = outputs.visualizations # type: ignore
batch_size = next(
iter(next(iter(visualizations.values())).values())
).shape[0]
renders = process_visualizations(
visualizations,
batch_size=batch_size,
)
for j in range(batch_size):
for (node_name, viz_name), visualizations in renders.items():
viz = visualizations[j]
if save_dir is not None:
if img_paths is not None:
img_path = img_paths[i * batch_size + j]
name = f"{img_path.stem}_{node_name}_{viz_name}"
else:
name = f"{node_name}_{viz_name}_{i * batch_size + j}"
cv2.imwrite(str(save_dir / f"{name}.png"), viz)
else:
cv2.imshow(f"{node_name}/{viz_name}", viz)

if not save_dir and window_closed(): # pragma: no cover
broken = True
break

cv2.destroyAllWindows()


def infer_from_directory(
model: "luxonis_train.core.LuxonisModel",
img_paths: Iterable[Path],
Expand All @@ -136,27 +194,34 @@
@type save_dir: Path | None
@param save_dir: The directory to save the visualizations to.
"""
for img_path in img_paths:
img = cv2.imread(str(img_path))
outputs = prepare_and_infer_image(model, img)
renders = process_visualizations(outputs.visualizations, batch_size=1)
img_paths = list(img_paths)

def generator():
for img_path in img_paths:
yield {
"file": img_path,
}

dataset_name = "infer_from_directory"
dataset = LuxonisDataset(dataset_name=dataset_name, delete_existing=True)
dataset.add(generator())
dataset.make_splits(
{"train": 0.0, "val": 0.0, "test": 1.0}, replace_old_splits=True
)

for (node_name, viz_name), [viz] in renders.items():
if save_dir is not None:
cv2.imwrite(
str(
save_dir
/ f"{img_path.stem}_{node_name}_{viz_name}.png"
),
viz,
)
else: # pragma: no cover
cv2.imshow(f"{node_name}/{viz_name}", viz)
loader = LuxonisLoaderTorch(
dataset_name=dataset_name,
image_source="image",
view="test",
augmentations=model.val_augmentations,
)
loader = torch_data.DataLoader(
loader, batch_size=model.cfg.trainer.batch_size
)

if not save_dir and window_closed(): # pragma: no cover
break
infer_from_loader(model, loader, save_dir, img_paths)

cv2.destroyAllWindows()
dataset.delete_dataset()


def infer_from_dataset(
Expand All @@ -173,33 +238,6 @@
@type save_dir: str | Path | None
@param save_dir: The directory to save the visualizations to.
"""
broken = False
for i, (inputs, labels) in enumerate(model.pytorch_loaders[view]):
if broken: # pragma: no cover
break

images = get_denormalized_images(model.cfg, inputs)
batch_size = images.shape[0]
outputs = model.lightning_module.forward(
inputs, labels, images=images, compute_visualizations=True
)
renders = process_visualizations(
outputs.visualizations,
batch_size=batch_size,
)
for j in range(batch_size):
for (node_name, viz_name), visualizations in renders.items():
viz = visualizations[j]
if save_dir is not None:
name = f"{node_name}_{viz_name}"
cv2.imwrite(
str(save_dir / f"{name}_{i * batch_size + j}.png"), viz
)
else:
cv2.imshow(f"{node_name}/{viz_name}", viz)

if not save_dir and window_closed(): # pragma: no cover
broken = True
break

cv2.destroyAllWindows()
loader = model.pytorch_loaders[view]
infer_from_loader(model, loader, save_dir)
16 changes: 16 additions & 0 deletions luxonis_train/models/luxonis_lightning.py
Original file line number Diff line number Diff line change
Expand Up @@ -686,6 +686,22 @@ def test_step(
"""Performs one step of testing with provided batch."""
return self._evaluation_step("test", test_batch)

def predict_step(
self, batch: tuple[dict[str, Tensor], Labels]
) -> LuxonisOutput:
"""Performs one step of prediction with provided batch."""
inputs, labels = batch
images = get_denormalized_images(self.cfg, inputs)
outputs = self.forward(
inputs,
labels,
images=images,
compute_visualizations=True,
compute_loss=False,
compute_metrics=False,
)
return outputs

def on_train_epoch_end(self) -> None:
"""Performs train epoch end operations."""
epoch_train_losses = self._average_losses(self.training_step_outputs)
Expand Down