Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: fix function names after rename #194

Merged
merged 1 commit into from
Dec 19, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 19 additions & 19 deletions light_curves/code_src/sample_lc.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@
from gaia_functions import Gaia_get_lightcurve
from HCV_functions import HCV_get_lightcurves
from heasarc_functions import HEASARC_get_lightcurves
from icecube_functions import icecube_get_lightcurve
from panstarrs import panstarrs_get_lightcurves
from icecube_functions import Icecube_get_lightcurve
from panstarrs import Panstarrs_get_lightcurves
from sample_selection import (clean_sample, get_green_sample, get_hon_sample, get_lamassa_sample,
get_lopeznavas_sample, get_lyu_sample, get_macleod16_sample, get_macleod19_sample, get_paper_sample,
get_ruan_sample, get_SDSS_sample, get_sheng_sample, get_yang_sample, nonunique_sample)
Expand All @@ -22,10 +22,10 @@

def build_sample():
'''Putting together a sample of SDSS quasars, WISE variable AGNs,
TDEs, Changing look AGNs, .. coordinates from different
TDEs, Changing look AGNs, .. coordinates from different
papers.'''
coords =[]

coords = []
labels = []

get_lamassa_sample(coords, labels) #2015ApJ...800..144L
Expand All @@ -44,38 +44,38 @@ def build_sample():
vagn_coords = [SkyCoord(ra, dec, frame='icrs', unit='deg') for ra, dec in zip(VAGN['SDSS_RA'], VAGN['SDSS_Dec'])]
vagn_labels = ['WISE-Variable' for ra in VAGN['SDSS_RA']]
coords.extend(vagn_coords)
labels.extend(vagn_labels)
labels.extend(vagn_labels)

#now get some "normal" QSOs for use in the classifier
#there are ~500K of these, so choose the number based on
#a balance between speed of running the light curves and whatever
#a balance between speed of running the light curves and whatever
#the ML algorithms would like to have
num_normal_QSO = 2000
get_SDSS_sample(coords, labels, num_normal_QSO)

## ADD TDEs to the sample, manually copied the TDE ZTF names from Hammerstein et al. 2023
#tde_names = ['ZTF18aabtxvd','ZTF18aahqkbt','ZTF18abxftqm','ZTF18acaqdaa','ZTF18acpdvos','ZTF18actaqdw','ZTF19aabbnzo','ZTF18acnbpmd','ZTF19aakiwze','ZTF19aakswrb','ZTF17aaazdba','ZTF19aapreis','ZTF19aarioci','ZTF19abhejal','ZTF19abhhjcc','ZTF19abidbya','ZTF19abzrhgq','ZTF19accmaxo','ZTF20aabqihu','ZTF19acspeuw','ZTF20aamqmfk','ZTF18aakelin','ZTF20abjwvae','ZTF20abfcszi','ZTF20abefeab','ZTF20abowque','ZTF20abrnwfc','ZTF20acitpfz','ZTF20acqoiyt', 'ZTF20abnorit']
#TDE_id2coord(tde_names,coords,labels)


get_paper_sample('2015ApJ...810...14A','FermiBL',coords,labels)
get_paper_sample('2019A&A...627A..33D','Cicco19',coords,labels)
get_paper_sample('2022ApJ...933...37W','Galex variable 22',coords,labels)
get_paper_sample('2020ApJ...896...10B','Palomar variable 20',coords,labels)

#To remove duplicates from the list if combining multiple references clean_sample can be used
#To remove duplicates from the list if combining multiple references clean_sample can be used
# the call below with nonunique_sample just changes the structure to mimic the output of clean sample
coords_list, labels_list = nonunique_sample(coords, labels)
coords_list, labels_list = nonunique_sample(coords, labels)
print('final sample: ',len(coords))
return coords_list,labels_list


def parallel_lc(coords_list,labels_list,parquet_savename = '../output/df_lc_.parquet'):
''' Check all the archives for the light curve data of the
list of coordinates given in input in parallel and return a
''' Check all the archives for the light curve data of the
list of coordinates given in input in parallel and return a
muldidimensional lightcurve dataframe.'''
max_fermi_error_radius = str(1.0)

max_fermi_error_radius = str(1.0)
max_sax_error_radius = str(3.0)
heasarc_cat = ["FERMIGTRIG", "SAXGRBMGRB"]
error_radius = [max_fermi_error_radius , max_sax_error_radius]
Expand Down Expand Up @@ -109,10 +109,10 @@ def parallel_lc(coords_list,labels_list,parquet_savename = '../output/df_lc_.par
HCV_get_lightcurves, (coords_list, labels_list, hcv_radius), callback=callback
)
pool.apply_async(
icecube_get_lightcurve, (coords_list, labels_list, 3, "../data/", 1), callback=callback
Icecube_get_lightcurve, (coords_list, labels_list, 3, "../data/", 1), callback=callback
)
pool.apply_async(
panstarrs_get_lightcurves, (coords_list, labels_list, panstarrs_radius), callback=callback
Panstarrs_get_lightcurves, (coords_list, labels_list, panstarrs_radius), callback=callback
)
pool.apply_async(
TESS_Kepler_get_lightcurves, (coords_list, labels_list, lk_radius), callback=callback
Expand All @@ -129,7 +129,7 @@ def parallel_lc(coords_list,labels_list,parquet_savename = '../output/df_lc_.par

parallel_endtime = time.time()
print('parallel processing took', parallel_endtime - parallel_starttime, 's')

# # Save the data for future use with ML notebook
parallel_df_lc.data.to_parquet(parquet_savename)
print("file saved!")
Expand All @@ -139,6 +139,6 @@ def main():
c,l = build_sample()
dflc = parallel_lc(c,l,parquet_savename = '../output/df_lc_smalltest.parquet')
# Unify for ML and save

if __name__ == "__main__":
main()