Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add matrix_power to quantum_info.linalg_operations #1454

Merged
merged 30 commits into from
Sep 20, 2024
Merged
Show file tree
Hide file tree
Changes from 28 commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
87801f5
add backend abstract method
renatomello Sep 18, 2024
93f99d0
api ref
renatomello Sep 18, 2024
e4805eb
abstract method
renatomello Sep 18, 2024
1ef1248
new method
renatomello Sep 18, 2024
2b28f6a
remove function
renatomello Sep 18, 2024
f106a23
add function
renatomello Sep 18, 2024
f2e4d3a
test
renatomello Sep 18, 2024
f61323b
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Sep 18, 2024
4ea6aa1
docstring
renatomello Sep 18, 2024
cc41c73
Merge branch 'matrix_power' of github.com:qiboteam/qibo into matrix_p…
renatomello Sep 18, 2024
b0fdee2
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Sep 18, 2024
749ede7
fix tests
renatomello Sep 18, 2024
a9dc0b9
changing jit branch
renatomello Sep 18, 2024
8205d92
Merge branch 'master' into matrix_power
renatomello Sep 18, 2024
ef61e6f
update lock
renatomello Sep 18, 2024
328aa9c
fix tests
renatomello Sep 18, 2024
db0e5d7
Merge branch 'master' into matrix_power
renatomello Sep 19, 2024
bfc0bc1
Merge branch 'master' into matrix_power
renatomello Sep 19, 2024
065c53c
Andrea's suggestions
renatomello Sep 19, 2024
7f512c5
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Sep 19, 2024
cc4c424
reverting qibojit to main
scarrazza Sep 20, 2024
21143b7
Update tests/test_quantum_info_operations.py
renatomello Sep 20, 2024
3e1f6d9
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Sep 20, 2024
69830ea
Merge branch 'master' into matrix_power
renatomello Sep 20, 2024
262f89d
Merge branch 'master' into matrix_power
renatomello Sep 20, 2024
d70a7ce
fix test
renatomello Sep 20, 2024
6559c7f
fix test
renatomello Sep 20, 2024
41bc698
Merge branch 'master' into matrix_power
renatomello Sep 20, 2024
ec9595f
Update src/qibo/backends/abstract.py
renatomello Sep 20, 2024
f96efdf
Update src/qibo/quantum_info/linalg_operations.py
renatomello Sep 20, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions doc/source/api-reference/qibo.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1964,6 +1964,12 @@ Matrix exponentiation
.. autofunction:: qibo.quantum_info.matrix_exponentiation


Matrix power
renatomello marked this conversation as resolved.
Show resolved Hide resolved
""""""""""""

.. autofunction:: qibo.quantum_info.matrix_power


Quantum Networks
^^^^^^^^^^^^^^^^

Expand Down
610 changes: 318 additions & 292 deletions poetry.lock

Large diffs are not rendered by default.

16 changes: 16 additions & 0 deletions src/qibo/backends/abstract.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import abc
from typing import Union

from qibo.config import raise_error

Expand Down Expand Up @@ -355,6 +356,21 @@ def calculate_matrix_exp(
"""
raise_error(NotImplementedError)

@abc.abstractmethod
def calculate_matrix_power(
self, matrix, power: Union[float, int]
): # pragma: no cover
"""Calculates the (fractional) ``power`` :math:`\\alpha` of ``matrix`` :math:`A`,
renatomello marked this conversation as resolved.
Show resolved Hide resolved
i.e. :math:`A^{\\alpha}`.

.. note::
For the ``pytorch`` backend, this method relies on a copy of the original tensor.
This may break the gradient flow. For the GPU backends (i.e. ``cupy`` and
``cuquantum``), this method falls back to CPU whenever ``power`` is not
an integer.
"""
raise_error(NotImplementedError)

@abc.abstractmethod
def calculate_hamiltonian_matrix_product(
self, matrix1, matrix2
Expand Down
11 changes: 10 additions & 1 deletion src/qibo/backends/numpy.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
import collections
import math
from typing import Union

import numpy as np
from scipy import sparse
from scipy.linalg import block_diag
from scipy.linalg import block_diag, fractional_matrix_power

from qibo import __version__
from qibo.backends import einsum_utils
Expand Down Expand Up @@ -768,6 +769,14 @@ def calculate_matrix_exp(self, a, matrix, eigenvectors=None, eigenvalues=None):
ud = self.np.transpose(np.conj(eigenvectors))
return self.np.matmul(eigenvectors, self.np.matmul(expd, ud))

def calculate_matrix_power(self, matrix, power: Union[float, int]):
if not isinstance(power, (float, int)):
raise_error(
TypeError,
f"``power`` must be either float or int, but it is type {type(power)}.",
)
renatomello marked this conversation as resolved.
Show resolved Hide resolved
return fractional_matrix_power(matrix, power)

# TODO: remove this method
def calculate_hamiltonian_matrix_product(self, matrix1, matrix2):
return matrix1 @ matrix2
Expand Down
5 changes: 5 additions & 0 deletions src/qibo/backends/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,11 @@ def calculate_matrix_exp(self, a, matrix, eigenvectors=None, eigenvalues=None):
ud = self.np.conj(eigenvectors).T
return self.np.matmul(eigenvectors, self.np.matmul(expd, ud))

def calculate_matrix_power(self, matrix, power):
copied = self.to_numpy(self.np.copy(matrix))
copied = super().calculate_matrix_power(copied, power)
return self.cast(copied, dtype=copied.dtype)
renatomello marked this conversation as resolved.
Show resolved Hide resolved

def _test_regressions(self, name):
if name == "test_measurementresult_apply_bitflips":
return [
Expand Down
32 changes: 7 additions & 25 deletions src/qibo/quantum_info/entropies.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,10 @@
from typing import Union

import numpy as np
from scipy.linalg import fractional_matrix_power

from qibo.backends import _check_backend
from qibo.backends.pytorch import PyTorchBackend
from qibo.config import PRECISION_TOL, raise_error
from qibo.quantum_info.linalg_operations import partial_trace
from qibo.quantum_info.linalg_operations import matrix_power, partial_trace
from qibo.quantum_info.metrics import _check_hermitian, purity


Expand Down Expand Up @@ -724,7 +722,7 @@ def renyi_entropy(state, alpha: Union[float, int], base: float = 2, backend=None
/ np.log2(base)
)

log = backend.np.log2(backend.np.trace(_matrix_power(state, alpha, backend)))
log = backend.np.log2(backend.np.trace(matrix_power(state, alpha, backend)))

return (1 / (1 - alpha)) * log / np.log2(base)

Expand Down Expand Up @@ -823,17 +821,17 @@ def relative_renyi_entropy(
return relative_von_neumann_entropy(state, target, base, backend=backend)

if alpha == np.inf:
new_state = _matrix_power(state, 0.5, backend)
new_target = _matrix_power(target, 0.5, backend)
new_state = matrix_power(state, 0.5, backend)
new_target = matrix_power(target, 0.5, backend)

log = backend.np.log2(
backend.calculate_norm_density_matrix(new_state @ new_target, order=1)
)

return -2 * log / np.log2(base)

log = _matrix_power(state, alpha, backend)
log = log @ _matrix_power(target, 1 - alpha, backend)
log = matrix_power(state, alpha, backend)
log = log @ matrix_power(target, 1 - alpha, backend)
log = backend.np.log2(backend.np.trace(log))

return (1 / (alpha - 1)) * log / np.log2(base)
Expand Down Expand Up @@ -891,7 +889,7 @@ def tsallis_entropy(state, alpha: float, base: float = 2, backend=None):
return von_neumann_entropy(state, base=base, backend=backend)

return (1 / (1 - alpha)) * (
backend.np.trace(_matrix_power(state, alpha, backend)) - 1
backend.np.trace(matrix_power(state, alpha, backend)) - 1
)


Expand Down Expand Up @@ -953,19 +951,3 @@ def entanglement_entropy(
)

return entropy_entanglement


def _matrix_power(matrix, alpha, backend):
"""Calculates ``matrix ** alpha`` according to backend."""
if backend.__class__.__name__ in [
"CupyBackend",
"CuQuantumBackend",
]: # pragma: no cover
new_matrix = backend.to_numpy(matrix)
else:
new_matrix = backend.np.copy(matrix)

if len(new_matrix.shape) == 1:
new_matrix = backend.np.outer(new_matrix, backend.np.conj(new_matrix))

return backend.cast(fractional_matrix_power(backend.to_numpy(new_matrix), alpha))
18 changes: 18 additions & 0 deletions src/qibo/quantum_info/linalg_operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,3 +196,21 @@ def matrix_exponentiation(
backend = _check_backend(backend)

return backend.calculate_matrix_exp(phase, matrix, eigenvectors, eigenvalues)


def matrix_power(matrix, power: Union[float, int], backend=None):
"""Given a ``matrix`` :math:`A` and power :math:`\\alpha`, calculates :math:`A^{\\alpha}`.
renatomello marked this conversation as resolved.
Show resolved Hide resolved

Args:
matrix (ndarray): matrix whose power to calculate.
power (float or int): power to raise ``matrix`` to.
backend (:class:`qibo.backends.abstract.Backend`, optional): backend
to be used in the execution. If ``None``, it uses
:class:`qibo.backends.GlobalBackend`. Defaults to ``None``.

Returns:
ndarray: matrix power :math:`A^{\\alpha}`.
"""
backend = _check_backend(backend)

return backend.calculate_matrix_power(matrix, power)
23 changes: 16 additions & 7 deletions tests/test_quantum_info_entropies.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,8 @@
import numpy as np
import pytest
from scipy.linalg import sqrtm

from qibo.config import PRECISION_TOL
from qibo.quantum_info.entropies import (
_matrix_power,
classical_mutual_information,
classical_relative_entropy,
classical_relative_renyi_entropy,
Expand All @@ -19,6 +17,7 @@
tsallis_entropy,
von_neumann_entropy,
)
from qibo.quantum_info.linalg_operations import matrix_power
from qibo.quantum_info.random_ensembles import (
random_density_matrix,
random_statevector,
Expand Down Expand Up @@ -646,8 +645,18 @@ def test_relative_renyi_entropy(backend, alpha, base, state_flag, target_flag):
if alpha == 1.0:
log = relative_von_neumann_entropy(state, target, base, backend=backend)
elif alpha == np.inf:
new_state = _matrix_power(state, 0.5, backend)
new_target = _matrix_power(target, 0.5, backend)
state_outer = (
backend.np.outer(state, backend.np.conj(state.T))
if state_flag
else state
)
target_outer = (
backend.np.outer(target, backend.np.conj(target.T))
if target_flag
else target
)
new_state = matrix_power(state_outer, 0.5, backend)
new_target = matrix_power(target_outer, 0.5, backend)

log = backend.np.log2(
backend.calculate_norm_density_matrix(
Expand All @@ -663,8 +672,8 @@ def test_relative_renyi_entropy(backend, alpha, base, state_flag, target_flag):
if len(target.shape) == 1:
target = backend.np.outer(target, backend.np.conj(target))

log = _matrix_power(state, alpha, backend)
log = log @ _matrix_power(target, 1 - alpha, backend)
log = matrix_power(state, alpha, backend)
log = log @ matrix_power(target, 1 - alpha, backend)
log = backend.np.log2(backend.np.trace(log))

log = (1 / (alpha - 1)) * log / np.log2(base)
Expand Down Expand Up @@ -710,7 +719,7 @@ def test_tsallis_entropy(backend, alpha, base):
target = von_neumann_entropy(state, base=base, backend=backend)
else:
target = (1 / (1 - alpha)) * (
backend.np.trace(_matrix_power(state, alpha, backend)) - 1
backend.np.trace(matrix_power(state, alpha, backend)) - 1
)

backend.assert_allclose(
Expand Down
21 changes: 21 additions & 0 deletions tests/test_quantum_info_operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,10 @@
from qibo.quantum_info.linalg_operations import (
anticommutator,
commutator,
matrix_power,
partial_trace,
)
from qibo.quantum_info.metrics import purity
from qibo.quantum_info.random_ensembles import random_density_matrix, random_statevector


Expand Down Expand Up @@ -109,3 +111,22 @@ def test_partial_trace(backend, density_matrix):
Id = backend.identity_density_matrix(1, normalize=True)

backend.assert_allclose(traced, Id)


@pytest.mark.parametrize("power", [2, 2.0, "2"])
def test_matrix_power(backend, power):
nqubits = 2
dims = 2**nqubits

state = random_density_matrix(dims, backend=backend)

if isinstance(power, str):
with pytest.raises(TypeError):
test = matrix_power(state, power, backend)
else:
power = matrix_power(state, power, backend)

backend.assert_allclose(
float(backend.np.real(backend.np.trace(power))),
purity(state, backend=backend),
)