-
Notifications
You must be signed in to change notification settings - Fork 0
Mach‐O文件是怎样被加载到内存中的
iOS 的可执行文件和动态库都是 Mach-O 格式,所以加载 APP 实际上就是加载 Mach-O 文件。
Mach-O header 信息结构代码如下:
struct mach_header_64 {
uint32_t magic; // 64 位还是 32 位
cpu_type_t cputype; // CPU 类型,比如 arm 或 X86
cpu_subtype_t cpusubtype; // CPU 子类型,比如 armv8
uint32_t filetype; // 文件类型
uint32_t ncmds; // load commands 的数量
uint32_t sizeofcmds; // load commands 大小
uint32_t flags; // 标签
uint32_t reserved; // 保留字段
};
如上面代码所示,包含了表示是 64 位还是 32 位的 magic、CPU 类型 cputype、CPU 子类型 cpusubtype、文件类型 filetype、描述文件在虚拟内存中逻辑结构和布局的 load commands 数量和大小等文件信息。
其中,文件类型 filetype 表示了当前 Mach-O 属于哪种类型。Mach-O 包括以下几种类型。
- OBJECT,指的是 .o 文件或者 .a 文件;
- EXECUTE,指的是 IPA 拆包后的文件;
- DYLIB,指的是 .dylib 或 .framework 文件;
- DYLINKER,指的是动态链接器;
- DSYM,指的是保存有符号信息用于分析闪退信息的文件。
加载 Mach-O 文件,内核会 fork 进程,并对进程进行一些基本设置,比如为进程分配虚拟内存、为进程创建主线程、代码签名等。用户态 dyld 会对 Mach-O 文件做库加载和符号解析。
苹果公司已经将 XNU 开源,并在 GitHub 上创建了镜像。要想编译 XNU,你可以查看“Building the XNU kernel on Mac OS X Sierra (10.12.X)”这篇文章;要想调试 XNU,可以查看“Source Level Debugging the XNU Kernel”这篇文章。
整个 fork 进程,加载解析 Mach-O 文件的过程可以在 XNU 的源代码中查看,代码路径是 darwin-xnu/bsd/kern/kern_exec.c,地址是https://github.com/apple/darwin-xnu/blob/master/bsd/kern/kern_exec.c,相关代码在 __mac_execve 函数里,代码如下:
int __mac_execve(proc_t p, struct __mac_execve_args *uap, int32_t *retval)
{
// 字段设置
...
int is_64 = IS_64BIT_PROCESS(p);
struct vfs_context context;
struct uthread *uthread; // 线程
task_t new_task = NULL; // Mach Task
...
context.vc_thread = current_thread();
context.vc_ucred = kauth_cred_proc_ref(p);
// 分配大块内存,不用堆栈是因为 Mach-O 结构很大。
MALLOC(bufp, char *, (sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap)), M_TEMP, M_WAITOK | M_ZERO);
imgp = (struct image_params *) bufp;
// 初始化 imgp 结构里的公共数据
...
uthread = get_bsdthread_info(current_thread());
if (uthread->uu_flag & UT_VFORK) {
imgp->ip_flags |= IMGPF_VFORK_EXEC;
in_vfexec = TRUE;
} else {
// 程序如果是启动态,就需要 fork 新进程
imgp->ip_flags |= IMGPF_EXEC;
// fork 进程
imgp->ip_new_thread = fork_create_child(current_task(),
NULL, p, FALSE, p->p_flag & P_LP64, TRUE);
// 异常处理
...
new_task = get_threadtask(imgp->ip_new_thread);
context.vc_thread = imgp->ip_new_thread;
}
// 加载解析 Mach-O
error = exec_activate_image(imgp);
if (imgp->ip_new_thread != NULL) {
new_task = get_threadtask(imgp->ip_new_thread);
}
if (!error && !in_vfexec) {
p = proc_exec_switch_task(p, current_task(), new_task, imgp->ip_new_thread);
should_release_proc_ref = TRUE;
}
kauth_cred_unref(&context.vc_ucred);
if (!error) {
task_bank_init(get_threadtask(imgp->ip_new_thread));
proc_transend(p, 0);
thread_affinity_exec(current_thread());
// 继承进程处理
if (!in_vfexec) {
proc_inherit_task_role(get_threadtask(imgp->ip_new_thread), current_task());
}
// 设置进程的主线程
thread_t main_thread = imgp->ip_new_thread;
task_set_main_thread_qos(new_task, main_thread);
}
...
}
可以看出,由于 Mach-O 文件很大, __mac_execve 函数会先为 Mach-O 分配一大块内存 imgp,接下来会初始化 imgp 里的公共数据。内存处理完,__mac_execve 函数就会通过 fork_create_child() 函数 fork 出一个新的进程。新进程 fork 后,会通过 exec_activate_image() 函数解析加载 Mach-O 文件到内存 imgp 里。最后,使用 task_set_main_thread_qos() 函数设置新 fork 出进程的主线程。
exec_activate_image() 函数会调用不同格式对应的加载函数,代码如下:
struct execsw {
int (*ex_imgact)(struct image_params *);
const char *ex_name;
} execsw[] = {
{ exec_mach_imgact, "Mach-o Binary" },
{ exec_fat_imgact, "Fat Binary" },
{ exec_shell_imgact, "Interpreter Script" },
{ NULL, NULL}
};
可以看出,加载 Mach-O 文件的是 exec_mach_imgact() 函数。exec_mach_imgact() 会通过 load_machfile() 函数加载 Mach-O 文件,根据解析 Mach-O 后得到的 load command 信息,通过映射方式加载到内存中。还会使用 activate_exec_state() 函数处理解析加载 Mach-O 后的结构信息,设置执行 App 的入口点。
设置完入口点后会通过 load_dylinker() 函数来解析加载 dyld,然后将入口点地址改成 dyld 的入口地址。这一步完后,内核部分就完成了 Mach-O 文件的加载。剩下的就是用户态层 dyld 加载 App 了。
Dyld 的入口函数是 __dyld_start,dyld 属于用户态进程,不在 XNU 里,__dyld_start 函数的实现代码在 dyld 仓库中的 dyldStartup.s 文件里。__dyld_start 会加载 App 相关的动态库,处理完成后会返回 App 的入口地址,然后到 App 的 main 函数。
今天我跟你介绍了 iOS 系统的内核 XNU,以及 XNU 是如何加载 App 的。总体来说,XNU 加载就是为 Mach-O 创建一个新进程,建立虚拟内存空间,解析 Mach-O 文件,最后映射到内存空间。流程可以概括为:
- fork 新进程;
- 为 Mach-O 分配内存;
- 解析 Mach-O;
- 读取 Mach-O 头信息;
- 遍历 load command 信息,将 Mach-O 映射到内存;
- 启动 dyld。