Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move two-layer shallow water equations from Trixi.jl #28

Merged
merged 5 commits into from
Mar 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions examples/tree_1d_dgsem/elixir_shallowwater_twolayer_convergence.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the two-layer shallow water equations

equations = ShallowWaterTwoLayerEquations1D(gravity_constant = 10.0, rho_upper = 0.9,
rho_lower = 1.0)

initial_condition = initial_condition_convergence_test

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = 0.0
coordinates_max = sqrt(2.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 3,
n_cells_max = 10_000,
periodicity = true)

# create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8,
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
95 changes: 95 additions & 0 deletions examples/tree_1d_dgsem/elixir_shallowwater_twolayer_dam_break.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the two-layer shallow water equations for a dam break
# test with a discontinuous bottom topography function to test entropy conservation

equations = ShallowWaterTwoLayerEquations1D(gravity_constant = 9.81, H0 = 2.0,
rho_upper = 0.9, rho_lower = 1.0)

# Initial condition of a dam break with a discontinuous water heights and bottom topography.
# Works as intended for TreeMesh1D with `initial_refinement_level=5`. If the mesh
# refinement level is changed the initial condition below may need changed as well to
# ensure that the discontinuities lie on an element interface.
function initial_condition_dam_break(x, t, equations::ShallowWaterTwoLayerEquations1D)
v1_upper = 0.0
v1_lower = 0.0

# Set the discontinuity
if x[1] <= 10.0
H_lower = 2.0
H_upper = 4.0
b = 0.0
else
H_lower = 1.5
H_upper = 3.0
b = 0.5
end

return prim2cons(SVector(H_upper, v1_upper, H_lower, v1_lower, b), equations)
end

initial_condition = initial_condition_dam_break

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a non-periodic mesh

coordinates_min = 0.0
coordinates_max = 20.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 5,
n_cells_max = 10000,
periodicity = false)

boundary_condition = boundary_condition_slip_wall

# create the semidiscretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
boundary_conditions = boundary_condition)

###############################################################################
# ODE solvers

tspan = (0.0, 0.4)
ode = semidiscretize(semi, tspan)

###############################################################################
# Callbacks

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
save_analysis = false,
extra_analysis_integrals = (energy_total,
energy_kinetic,
energy_internal))

stepsize_callback = StepsizeCallback(cfl = 1.0)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8,
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the two-layer shallow water equations to test well-balancedness

equations = ShallowWaterTwoLayerEquations1D(gravity_constant = 1.0, H0 = 0.6,
rho_upper = 0.9, rho_lower = 1.0)

"""
initial_condition_fjordholm_well_balanced(x, t, equations::ShallowWaterTwoLayerEquations1D)

Initial condition to test well balanced with a bottom topography from Fjordholm
- Ulrik Skre Fjordholm (2012)
Energy conservative and stable schemes for the two-layer shallow water equations.
[DOI: 10.1142/9789814417099_0039](https://doi.org/10.1142/9789814417099_0039)
"""
function initial_condition_fjordholm_well_balanced(x, t,
equations::ShallowWaterTwoLayerEquations1D)
inicenter = 0.5
x_norm = x[1] - inicenter
r = abs(x_norm)

H_lower = 0.5
H_upper = 0.6
v1_upper = 0.0
v1_lower = 0.0
b = r <= 0.1 ? 0.2 * (cos(10 * pi * (x[1] - 0.5)) + 1) : 0.0
return prim2cons(SVector(H_upper, v1_upper, H_lower, v1_lower, b), equations)
end

initial_condition = initial_condition_fjordholm_well_balanced

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_es_ersing_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = 0.0
coordinates_max = 1.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 10_000,
periodicity = true)

# create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 10.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 1000
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
save_analysis = false,
extra_analysis_integrals = (lake_at_rest_error,))

stepsize_callback = StepsizeCallback(cfl = 1.0)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 1000,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
61 changes: 61 additions & 0 deletions examples/tree_2d_dgsem/elixir_shallowwater_twolayer_convergence.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the two-layer shallow water equations

equations = ShallowWaterTwoLayerEquations2D(gravity_constant = 10.0, rho_upper = 0.9,
rho_lower = 1.0)

initial_condition = initial_condition_convergence_test

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = (0.0, 0.0)
coordinates_max = (sqrt(2.0), sqrt(2.0))
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 3,
n_cells_max = 20_000,
periodicity = true)

# Create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 500,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(), abstol = 1.0e-8, reltol = 1.0e-8,
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the two-layer shallow water equations with a bottom topography function
# to test well-balancedness

equations = ShallowWaterTwoLayerEquations2D(gravity_constant = 9.81, H0 = 0.6,
rho_upper = 0.9, rho_lower = 1.0)

# An initial condition with constant total water height, zero velocities and a bottom topography to
# test well-balancedness
function initial_condition_well_balanced(x, t, equations::ShallowWaterTwoLayerEquations2D)
H_lower = 0.5
H_upper = 0.6
v1_upper = 0.0
v2_upper = 0.0
v1_lower = 0.0
v2_lower = 0.0
b = (((x[1] - 0.5)^2 + (x[2] - 0.5)^2) < 0.04 ?
0.2 * (cos(4 * pi * sqrt((x[1] - 0.5)^2 + (x[2] +
-0.5)^2)) + 1) : 0.0)

return prim2cons(SVector(H_upper, v1_upper, v2_upper, H_lower, v1_lower, v2_lower, b),
equations)
end

initial_condition = initial_condition_well_balanced

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_ersing_etal)
surface_flux = (flux_es_ersing_etal, flux_nonconservative_ersing_etal)
solver = DGSEM(polydeg = 3, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = (0.0, 0.0)
coordinates_max = (1.0, 1.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 3,
n_cells_max = 10_000,
periodicity = true)

# Create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solver

tspan = (0.0, 10.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 1000
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
extra_analysis_integrals = (lake_at_rest_error,))

stepsize_callback = StepsizeCallback(cfl = 1.0)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 1000,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Loading
Loading