The XeniumIO
package provides functions to import 10X Genomics Xenium
Analyzer data into R. The package is designed to work with the output of
the Xenium Analyzer, which is a software tool that processes Visium
spatial gene expression data. The package provides functions to import
the output of the Xenium Analyzer into R, and to create a TENxXenium
object that can be used with other Bioconductor packages.
The 10X suite of packages support multiple file formats. The following table lists the supported file formats and the corresponding classes that are imported into R.
Extension | Class | Imported as |
---|---|---|
.h5 | TENxH5 | SingleCellExperiment w/ TENxMatrix |
.mtx / .mtx.gz | TENxMTX | SummarizedExperiment w/ dgCMatrix |
.tar.gz | TENxFileList | SingleCellExperiment w/ dgCMatrix |
peak_annotation.tsv | TENxPeaks | GRanges |
fragments.tsv.gz | TENxFragments | RaggedExperiment |
.tsv / .tsv.gz | TENxTSV | tibble |
Extension | Class | Imported as |
---|---|---|
spatial.tar.gz | TENxSpatialList | DataFrame list * |
.parquet | TENxSpatialParquet | tibble * |
Extension | Class | Imported as |
---|---|---|
.zarr.zip | TENxZarr | (TBD) |
BiocManager::install("Bioconductor/XeniumIO")
library(XeniumIO)
The TENxXenium
class has a metadata
slot for the experiment.xenium
file. The resources
slot is a TENxFileList
or TENxH5
object
containing the cell feature matrix. The coordNames
slot is a vector
specifying the names of the columns in the spatial data containing the
spatial coordinates. The sampleId
slot is a scalar specifying the
sample identifier.
TENxXenium(
resources = "path/to/matrix/folder/or/file",
xeniumOut = "path/to/xeniumOut/folder",
sample_id = "sample01",
format = c("mtx", "h5"),
boundaries_format = c("parquet", "csv.gz"),
spatialCoordsNames = c("x_centroid", "y_centroid"),
...
)
The format
argument specifies the format of the resources
object,
either “mtx” or “h5”. The boundaries_format
allows the user to choose
whether to read in the data using the parquet
or csv.gz
format.
Note that the xeniumOut
unzipped folder must contain the following
files:
*outs
├── cell_feature_matrix.h5
├── cell_feature_matrix.tar.gz
| ├── barcodes.tsv*
| ├── features.tsv*
| └── matrix.mtx*
├── cell_feature_matrix.zarr.zip
├── experiment.xenium
├── cells.csv.gz
├── cells.parquet
├── cells.zarr.zip
[...]
Note that currently the zarr
format is not supported as the
infrastructure is currently under development.
The resources
slot should either be the TENxFileList
from the mtx
format or a TENxH5
instance from an h5
file. The boundaries can
either be a TENxSpatialParquet
instance or a TENxSpatialCSV
. These
classes are automatically instantiated by the constructor function.
showClass("TENxXenium")
#> Class "TENxXenium" [package "XeniumIO"]
#>
#> Slots:
#>
#> Name: resources
#> Class: TENxFileList_OR_TENxH5
#>
#> Name: boundaries
#> Class: TENxSpatialParquet_OR_TENxSpatialCSV
#>
#> Name: coordNames
#> Class: character
#>
#> Name: sampleId
#> Class: character
#>
#> Name: colData
#> Class: TENxSpatialParquet
#>
#> Name: metadata
#> Class: XeniumFile
The import
method for a TENxXenium
instance returns a
SpatialExperiment
class object. Dispatch is only done on the con
argument. See ?BiocIO::import
for details on the generic. The import
function call is meant to be a simple call without much input. For more
details in the package, see ?TENxXenium
.
getMethod("import", c(con = "TENxXenium"))
#> Method Definition:
#>
#> function (con, format, text, ...)
#> {
#> sce <- import(con@resources, ...)
#> metadata <- import(con@metadata)
#> coldata <- import(con@colData)
#> SpatialExperiment::SpatialExperiment(assays = list(counts = assay(sce)),
#> rowData = rowData(sce), mainExpName = mainExpName(sce),
#> altExps = altExps(sce), sample_id = con@sampleId, colData = as(coldata,
#> "DataFrame"), spatialCoordsNames = con@coordNames,
#> metadata = list(experiment.xenium = metadata, polygons = import(con@boundaries)))
#> }
#> <bytecode: 0x5cf84e6ff3b8>
#> <environment: namespace:XeniumIO>
#>
#> Signatures:
#> con format text
#> target "TENxXenium" "ANY" "ANY"
#> defined "TENxXenium" "ANY" "ANY"
The following code snippet demonstrates how to import a Xenium Analyzer
output into R. The TENxXenium
object is created by specifying the path
to the xeniumOut
folder. The TENxXenium
object is then imported into
R using the import
method for the TENxXenium
class.
download.file(
url = paste0(
"https://cf.10xgenomics.com/samples/xenium/3.0.0/",
"Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny/",
"Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs.zip"
),
destfile =
"~/data/Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs.zip"
)
unzip(
zipfile =
"~/data/Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs.zip",
exdir = "~/data/Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs",
overwrite = FALSE
)
TENxXenium(
xeniumOut = "~/data/Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs"
) |> import()
#' class: SpatialExperiment
#' dim: 8 36
#' metadata(2): experiment.xenium polygons
#' assays(1): counts
#' rownames(8): DeprecatedCodeword_0321 DeprecatedCodeword_6781 ...
#' DeprecatedCodeword_16059 DeprecatedCodeword_18533
#' rowData names(3): ID Symbol Type
#' colnames(36): aaamobki-1 aaclkaod-1 ... olbjkpjc-1 omjmdimk-1
#' colData names(13): cell_id transcript_counts ... segmentation_method
#' sample_id
#' reducedDimNames(0):
#' mainExpName: Deprecated Codeword
#' altExpNames(5): Gene Expression Genomic Control Negative Control
#' Codeword Negative Control Probe Unassigned Codeword
#' spatialCoords names(2) : x_centroid y_centroid
#' imgData names(0):
The dataset was obtained from the 10X Genomics website under the X0A
v3.0
section
and is a subset of the Xenium Prime 5K Mouse Pan Tissue & Pathways
Panel. The link to the data can be seen as the url
input above and
shown below for completeness.
sessionInfo()
#> R version 4.4.1 Patched (2024-08-13 r87005)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] XeniumIO_0.99.0 TENxIO_1.7.8
#> [3] SingleCellExperiment_1.27.2 SummarizedExperiment_1.35.4
#> [5] Biobase_2.65.1 GenomicRanges_1.57.2
#> [7] GenomeInfoDb_1.41.2 IRanges_2.39.2
#> [9] S4Vectors_0.43.2 BiocGenerics_0.51.3
#> [11] MatrixGenerics_1.17.0 matrixStats_1.4.1
#>
#> loaded via a namespace (and not attached):
#> [1] utf8_1.2.4 SparseArray_1.5.44 lattice_0.22-6
#> [4] hms_1.1.3 digest_0.6.37 magrittr_2.0.3
#> [7] evaluate_1.0.1 grid_4.4.1 fastmap_1.2.0
#> [10] jsonlite_1.8.9 Matrix_1.7-0 httr_1.4.7
#> [13] fansi_1.0.6 VisiumIO_1.1.10 UCSC.utils_1.1.0
#> [16] codetools_0.2-20 abind_1.4-8 cli_3.6.3
#> [19] rlang_1.1.4 crayon_1.5.3 XVector_0.45.0
#> [22] DelayedArray_0.31.14 yaml_2.3.10 BiocBaseUtils_1.7.3
#> [25] S4Arrays_1.5.11 tools_4.4.1 tzdb_0.4.0
#> [28] SpatialExperiment_1.15.1 GenomeInfoDbData_1.2.13 vctrs_0.6.5
#> [31] R6_2.5.1 magick_2.8.5 BiocIO_1.15.2
#> [34] lifecycle_1.0.4 zlibbioc_1.51.1 pkgconfig_2.0.3
#> [37] pillar_1.9.0 Rcpp_1.0.13 glue_1.8.0
#> [40] xfun_0.48 tibble_3.2.1 knitr_1.48
#> [43] rjson_0.2.23 htmltools_0.5.8.1 rmarkdown_2.28
#> [46] readr_2.1.5 compiler_4.4.1